
Firebird 2.5 Release Notes
Helen Borrie (Collator/Editor)

28 March 2009 - Document v.0250_14 - for Firebird 2.5 Beta 1

Firebird 2.5 Release Notes
28 March 2009 - Document v.0250_14 - for Firebird 2.5 Beta 1
Helen Borrie (Collator/Editor)

iv

Table of Contents
1. General Notes .. 1

Bug Reporting ... 1
Documentation ... 1

2. New in Firebird 2.5 ... 2
Other New Features ... 2

Administrative Enhancements ... 2
Other SQL Language Additions .. 2
Data-handling Enhancements .. 3
API Additions .. 3
International Language Support .. 3

3. Changes in the Firebird Engine ... 4
New Threading Architecture ... 4

“Superclassic” .. 5
Thread-safe Client Library .. 6
Improvements .. 6

Immediate Detection of Disconnected Clients on Classic .. 6
Optimizations ... 6
DLL Loading for Windows Embedded Engine .. 7
UDFs Safeguard ... 7
Diagnostics .. 7
Metadata Improvements ... 8

4. Changes to the Firebird API and ODS .. 9
ODS (On-Disk Structure) Changes .. 9

New ODS Number ... 9
API (Application Programming Interface) Extensions .. 9

Connection Strings & Character Sets .. 9
Support for SQLSTATE Completion Codes ... 10
“Efficient Unprepare” ... 11
Cancel Operation Function ... 11
Shutdown Functions ... 13
Tighter Control Over Header-level Changes .. 17
New Trace Services for Applications .. 17
Other Services API Additions ... 20

5. New Reserved Words and Changes ... 22
Newly Reserved Words .. 22
Keywords Added as Non-reserved .. 22

6. Configuration Parameter Additions and Changes .. 23
AuditTraceConfigFile ... 23
Authentication .. 23

Changes in V.2.5 ... 23
MaxUserTraceLogSize .. 24
OldSetClauseSemantics .. 24
Use Hostname for RemoteBindAddress .. 24

7. Administrative Features .. 25
New RDB$ADMIN System Role .. 25

Windows Domain Administrators .. 25
Trace and Audit Services .. 26

Overview of Features ... 26

Firebird 2.5 Release Notes

v

The System Audit Session .. 27
User Trace Sessions ... 27
Use Cases .. 29

Monitoring Improvements ... 30
Extended Access for Ordinary Users ... 30
New MON$ Metadata for ODS 11.2 Databases ... 31
Usage Notes ... 32

8. Security Hardening ... 34
Windows Platforms .. 34

No SYSDBA Auto-mapping (Windows) .. 34
9. Data Definition Language (DDL) .. 35

Quick Links ... 35
Visibility of Procedure Definition Changes on Classic .. 35
CREATE/ALTER/DROP USER ... 35
Syntaxes for Altering Views ... 37
Extension for CREATE VIEW ... 38
ALTER Mechanism for Computed Columns .. 38
Extensions for SQL Permissions ... 38
Default COLLATION Attribute for a Database .. 40
ALTER CHARACTER SET Command ... 41

10. Data Manipulation Language (DML) ... 42
Quick Links ... 42

RegEx Search Support using SIMILAR TO ... 42
Hex Literal Support .. 47
New UUID Conversion Functions ... 48
SOME_COL = ? OR ? IS NULL Predication .. 48
Extension to LIST() Function ... 49
Optimizer Improvements .. 50
Other Improvements ... 50

11. Procedural SQL (PSQL) ... 52
Quick Links ... 52
Autonomous Transactions ... 52
Borrow Database Column Type for a PSQL Variable ... 53
New Extensions to EXECUTE STATEMENT ... 54

Context Issues .. 54
External Queries from PSQL .. 56
EXECUTE STATEMENT with Dynamic Parameters ... 57
Examples Using EXECUTE STATEMENT ... 58

12. International Language Support (INTL) ... 62
Default COLLATION Attribute for a Database .. 62
ALTER CHARACTER SET Command .. 62
Connection Strings & Character Sets ... 62
Other Improvements ... 62

Malformed UNICODE_FSS Characters Disallowed ... 62
Repair Switches for Malformed Strings ... 63
Numeric Sort Attributes .. 63
Character Sets and Collations ... 63

13. Command-line Utilities ... 65
Retrieve Password from a File or Prompt .. 65

New -fetch_password Switch .. 65
gsec and fbsvcmgr ... 66

New -mapping Switch for gsec ... 66

Firebird 2.5 Release Notes

vi

Mapping Tags for fbsvcmgr .. 66
gbak .. 67

Repair Switches for Malformed Strings ... 67
Preserve Character Set Default Collation ... 67

nBackup ... 67
isql .. 68

SQLSTATE instead of SQLCODE .. 68
gpre (Precompiler) .. 68

Some Updates .. 68
14. Installation Notes ... 69

Linux (POSIX) ... 69
Windows .. 69

Managing MSCV8 Assemblies ... 69
15. Compatibility Issues ... 71

Effects of Unicode Metadata ... 71
Configuration Parameters Removed ... 71
SQL Language Changes ... 71

Reserved Words ... 71
Execution Results ... 71

Utilities .. 72
fb_lock_print .. 72

API Changes .. 72
Rejection of Inconsistent TPB Options .. 73
Addition of SQL_NULL Constant ... 73

Security Hardening ... 73
No SYSDBA Auto-mapping (Windows) .. 73
Default Authentication Method (Windows) .. 73

16. Bugs Fixed ... 74
Firebird 2.5 Beta 1 ... 74

Core Engine/DSQL .. 74
Firebird 2.5 Alpha 1 ... 93

17. Firebird 2.5 Project Teams .. 102
Appendix A: SQLSTATE ... 104

SQLSTATE Codes & Messages .. 104
Appendix B: Licence Notice ... 112

vii

List of Tables
10.1. Character class identifiers .. 44
17.1. Firebird Development Teams .. 102

1

Chapter 1

General Notes

Bug Reporting

• If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

• If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test data in your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this alpha by subscribing to the
field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this alpha.

Documentation

You will find all of the README documents referred to in these notes in the doc sub-directory of your Firebird
2.5 Alpha 1 installation.

An automated "Release Notes" page in the Tracker provides lists and links for all of the Tracker tickets associated
with this alpha. Use this link.

--The Firebird Project

http://www.firebirdsql.org/index.php?op=devel&sub=qa&id=bugreport_howto
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10000&styleName=Html&version=10041

2

Chapter 2

New in Firebird 2.5
The primary goal for Firebird 2.5 was to establish the basics for a new threading architecture that is almost
entirely common to the Superserver, Classic and Embedded models, taking in lower level synchronization and
thread safety generally.

Although SQL enhancements are not a primary objective of this release, for the first time, user management be-
comes accessible through SQL CREATE/ALTER/DROP USER statements and syntaxes for ALTER VIEW and
CREATE OR ALTER VIEW are implemented. PSQL improvements include the introduction of autonomous
transactions and ability to query another database via EXECUTE STATEMENT.

Other New Features

Other new features and improvements in this release include:

Administrative Enhancements

• System audit tracing and user trace sessions via the Services API, making it possible to monitor and analyse
everything going on in a database in real time

• New system role RDB$ADMIN in the ODS 11.2 database allows SYSDBA to transfer its privileges to another
user on a per-database basis

• More information in the monitoring tables

• Asynchronous cancellation of connections

• Capability for ordinary users to monitor any of their own attachments as well as CURRENT_CONNECTION

Other SQL Language Additions

• Regular expression support using the SIMILAR TO predicate

• ALTER COLUMN for computed columns

• Autonomous transactions within a PSQL module (stored procedure, trigger or dynamically executable PSQL
block)

• Enhanced access to stored procedures in view definitions

• Optional GRANTED BY or GRANTED AS for GRANT and REVOKE statements, enabling the grantor to
be a user other than the CURRENT_USER (the default).

• REVOKE ALL syntax to dispose of all privileges for a user or role at once

New in Firebird 2.5

3

• Support for WHERE SOME_COL = ? OR ? IS NULL predications

Data-handling Enhancements

• New built-in functions for converting UUID CHAR(16) OCTETS strings to RFC4122-compliant format and
vice versa

• Ability to pass 32-bit and 64-bit integers as hexadecimal in numeric literal and X-prefixed binary string literal
formats

API Additions

• Statements now return an SQL-2003 standard 5-alphanumeric SQLSTATE completion code

• New constant DSQL_unprepare available for use with isc_dsql_free_statement for efficient unpreparing of
statements

International Language Support

• Default COLLATE clause for CREATE DATABASE

• Ability to change the default COLLATE for a used character set

• GBAK restore switches FIX_FSS_DATA and FIX_FSS_METADATA to restore legacy databases with
UNICODE_FSS data and/or metadata correctly without resorting to scripts and manual techniques

• Accent-insensitive collation for Unicode

4

Chapter 3

Changes in the
Firebird Engine

The primary objective of this release was to refactor Firebird's threading architecture to take advantage of the
symmetric multiprocessing (SMP) capabilities of multiprocessor hardware. This has a noticeable effect on the
scaleability of Superserver when multiple databases are being accessed simultaneously but its major effect is the
emergence of the architectural “Superclassic” model that will underpin the fine-grained multi-threading under
development for Firebird 3.

New Threading Architecture

Dmitry Yemanov
Vladyslav Khorsun
Alex Peshkov
also -
Nickolay Samofatov
Roman Simakov

For Superserver, the new architecture will be most obvious in two ways:

1. Superserver threads distributed evenly to available processors according the the database clients attach to.

Note

The default CpuAffinity setting still binds SuperServer to a single processor only. In order to scale better
when working with multiple databases, this setting should be changed in firebird.conf.

The default value may change before the final release.

2. A slight improvement in scaling for single database usage on SMP hardware

It is with Classic that the effects are most evident:

1. Classic Server can now be multi-threaded. The one worker thread per process model remains but now it is
possible to use additional threads for parallel tasks such as asynchronous shutdown, sweep, inter-process
communications with the lock manager and more.

2. On POSIX, services in Classic also run in threads now, rather than in forked processes as previously.

Changes in the Firebird Engine

5

Note

For Windows Classic, services became threadable in v.2.1.

3. The embedded libraries—libfbembed.so on POSIX and fbembed.dll on Windows—are now multi-thread-
capable and thread-safe, so they can be used in multi-threaded applications.

4. Testing suggests that the performance of Classic in this version will be be significantly faster than previous
Classic versions.

“Superclassic”

This multi-threaded mode for Classic has been dubbed “Superclassic” for its capability to handle multiple worker
threads—dedicated or pooled—inside a single server process. It shares all the usual Classic features, with a few
differences:

• Safe, full shutdown of the server engine is possible on any platform

• Under some TPC conditions, it can outperform Classic—by about 15-20%

• It uses fewer kernel resources (although not less memory)

• When a Superclassic process crashes, it takes all its connections with it

• Recognised limitations in the Services API for the Classic server, such as the inability to retrieve the list of
attachments/active users, do not apply to SuperClassic.

• On POSIX, Superclassic does not require [x]inetd.

Embedded Server

The embedded server in the Windows library, fbembed.dll, now uses Superclassic, not Superserver as previ-
ously, thus unifying its model with that of local connection to Superclassic on POSIX. The database file-lock
that previously restricted connections to a single application space is replaced by a global lock table that allows
simultaneous access to the same database from different embedded server modules. This facilitates concurrent
debugging of applications and use of native utility tools like gbak, gstat and so on.

Usage Notes

Windows

On Windows, the same fb_inet_server.exe binary delivers either the Classic or the Superclassic working
modes, according to switch settings. Classic is the default mode.

To use the Superclassic mode as a service, add the -m[ulti-threaded] switch to the instsvc.execommand
line, as follows:

instsvc install -multithreaded

Changes in the Firebird Engine

6

When intending to run Superclassic as an application, use

fb_inet_server -a -m

New Binary for POSIX

On POSIX, the new binary fb_smp_server is supplied for the Superclassic model. It contains the network
listener, meaning it works similarly to fbserver with regard to attachment requests and does not require
[x]inetd.

The multi-threaded engine used by fb_smp_server is the libfbembed.so library, in accordance with OSRI
requirements. The Classic packages also include fbguard (the Guardian) which, for Classic, starts fb_smp_
server, rather than fbserver as it does when the Superserver model is installed with Guardian.

Thread-safe Client Library

Dmitry Yemanov
Vladyslav Khorsun
Alex Peshkov

Tracker reference CORE-707.

The client libraries, including the embedded one, can now be used in multi-threaded applications without any
application-level synchronization.

Improvements

Improvements implemented include:

Immediate Detection of Disconnected Clients on Classic
Vladyslav Khorsun

The Classic server now detects immediately when a Classic process has been broken by a client disconnection. Its
response is to terminate any pending activity, roll back the active transaction and close the network connection.

Tracker reference CORE-818.

Optimizations

Important optimizations include:

Data Retrieval
Dmitry Yemanov

An optimization improves data retrieval performance for tables from which no fields are accessed. This applies,
for example to the SELECT COUNT(*) style of query.

http://tracker.firebirdsql.org/browse/CORE-707
http://tracker.firebirdsql.org/browse/CORE-818

Changes in the Firebird Engine

7

Tracker reference CORE-1598.

BLOB Memory Usage
Adriano dos Santos Fernandes

An optimization avoids memory consumption of <page size> bytes for each temporary BLOB created during
assignment.

Tracker reference CORE-1658.

DLL Loading for Windows Embedded Engine
Adriano dos Santos Fernandes

The root determination mechanism for the Windows embedded engine has been changed to avoid common
problems that occur when an installation of the application structure encounters “DLL Hell”. Previously, the
implicit root directory was the directory containing the user application's main executable file. Now it is the
directory where the renamed fbembed.dll library is located.

Tracker reference CORE-1814.

UDFs Safeguard
Adriano dos Santos Fernandes

Tracker reference CORE-1937.

When a string UDF is written to return a pointer not allocated by the same runtime as the Firebird server is
accessing, the presence of the FREE_IT keyword in its declaration corrupts memory and crashes the server. As
a safeguard against such dysfunctional UDFs, the engine now

1. detects such UDFs and throws an exception

2. depends on the presence of the updated ib_util library in the path for all server models, including embedded

Diagnostics

Transaction Diagnostics
Claudio Valderrama

Better diagnostics and error reporting when TPB contents are malformed. The new TPB validation logic now
rejects:

• explicitly conflicting options within the same category, e.g., {WAIT} and {NOWAIT} specified together,
or {READ COMMITTED} and {SNAPSHOT}, or {READ ONLY} and {WRITE}

• options making no sense, e.g. [NO] RECORD VERSION specified for a SNAPSHOT isolation mode

• incorrect order of table reservation options, e.g. {PROTECTED READ <TABLE>} instead of {READ
<TABLE> PROTECTED}

http://tracker.firebirdsql.org/browse/CORE-1598
http://tracker.firebirdsql.org/browse/CORE-1658
http://tracker.firebirdsql.org/browse/CORE-1814
http://tracker.firebirdsql.org/browse/CORE-1937

Changes in the Firebird Engine

8

Tracker reference CORE-1600.

Access Privilege Error Messages
Alex Peshkov

Both table and column names are now reported when access privilege exceptions occur for a column.

Tracker reference CORE-1234.

Metadata Improvements

Preserve Character Set Default Collation
Adriano dos Santos Fernandes

An improvement allows the current value of RDB$DEFAULT_COLLATE_NAME in the system table RDB
$CHARACTER_SETS to survive the backup/restore cycle. The mechanism for such customisation is the new
ALTER CHARACTER SET command.

Tracker reference CORE-789.

http://tracker.firebirdsql.org/browse/CORE-1600
http://tracker.firebirdsql.org/browse/CORE-1234
http://tracker.firebirdsql.org/browse/CORE-789

9

Chapter 4

Changes to the
Firebird API and ODS

ODS (On-Disk Structure) Changes

On-disk structure (ODS) changes include the following:

New ODS Number

Firebird 2.5 creates databases with an ODS (On-Disk Structure) version of 11.2

API (Application Programming Interface) Extensions

Additions to the Firebird API include.-

Connection Strings & Character Sets
A. dos Santos Fernandes

Previous versions had no way to interoperate with the character set(s) used by the operating system and its
filesystem. Firebird 2.5 has been made “environmentally aware” with regard to the file names of databases and
other files accessed through API connection requests, improving significantly its ability to accept and work with
file names containing characters that are not in the ASCII subset.

Only DPB Connections Support this Feature

In the current implementation, only connections made through the DPB (database parameter block) support
this feature. It is not supported for Services API (isc_spb*) functions.

isc_dpb_utf8_filename

The new connection option isc_dpb_utf8_filename has been introduced, to enable Firebird to be specifically
informed that the file name being passed is in the UTF8 (UTF-8) character set. If the option is not used, the
character set defaults to the codepage of the operating system.

Client-Server Compatibility

New client, older server

Changes to the Firebird API and ODS

10

If the client is V.2.5 or newer and it is connecting to a pre-V.2.5 remote server, using the
isc_dpb_utf8_filename option causes the client to convert the file name from UTF-8 to the client codepage
before passing it to the server. It removes the isc_dpb_utf8_filename option from the DPB.

Compatibility is assured when the same codepage is being used on both the the client and server stations.

New client, new server, without isc_dpb_utf8_filename
If the client is V.2.5 or newer and it is connecting to a V.2.5 or newer remote server without using the
isc_dpb_utf8_filename, the client converts the file name from the OS codepage to UTF-8 and inserts the
isc_dpb_utf8_filename option into the DPB.

The file name received on the server is not subject to any special treatment. However, unlike older clients,
the V.2.5 client may convert the file name automatically and insert the isc_dpb_utf8_filename option into
the DPB. Compatibility is guaranteed, regardless, when the host and client are using the same code page.

New client, new server, with isc_dpb_utf8_filename
Whenever the isc_dpb_utf8_filename option is used, the client passes the unmodified filename to the server.
The client thus always passes a UTF-8 file name to the server along with the isc_dpb_utf8_filename option.

Code Page Conversions

On Windows the code page used for conversions is Windows ANSI. On all other platforms, UTF-8 is used.

The operating system codepage and UTF-8 may not be the best choice for file names. For example, if you had
a script or other text file for processing in isql or some other script-running tool that used another connection
character set, it would not be possible to edit the file correctly using multiple character sets (code pages).

There is a solution: the Unicode code point. If used correctly, it enables correct interpretation of a character
even if the client is older than V.2.5.

Using Unicode Code Points

Any Unicode character may now now be encoded on the connection string file name as though it were an ASCII
character. It is accomplished by using the symbol # as a prefix for a Unicode code point number (in hexadecimal
format, similar to U+XXXX notation).

Write it as #XXXX with X being 0-9, a-f, A-F.

If one of the characters happens to be the literal #, you could either “double” the hash character (##) or use
the code point number for it, #0023.

Note

The hash character is interpreted at the server with these new semantics, even if the client is older than v2.5.

Support for SQLSTATE Completion Codes

W. Oliver
D. Yemanov

Tracker reference CORE-1761.

http://tracker.firebirdsql.org/browse/CORE-1761

Changes to the Firebird API and ODS

11

A new client-side API function, fb_sqlstate() is available to convert the status vector item for an error into the
corresponding SQL-2003 standard 5-alphanumeric SQLSTATE.

• The SQLSTATE code represents the concatenation of a 2-character SQL CLASS and a 3-character SQL
SUBCLASS.

• Statements now return an SQLSTATE completion code.

• The isql utility now prints the SQLSTATE diagnostic for errors instead of the SQLCODE one

• The SQLCODE diagnostic is deprecated—meaning it will disappear in a future release

Deprecated SQLCODE

Although the SQLCODE is deprecated and use of the SQLSTATE is preferred, it remains in Firebird for the
time being. The isc_sqlcode() API function is still supported, as is the WHEN SQLCODE exception handling.

Appendix A: SQLSTATE provides a list of all SQLSTATE codes in use in this release, along with the corre-
sponding message texts.

“Efficient Unprepare”

W. Oliver
D. Yemanov

Tracker reference CORE-1741.

The new option DSQL_unprepare (numeric value 4) for the API routine isc_dsql_free_statement() allows the
DSQL statement handle to survive the “unpreparing” of the statement.

Previously, the isc_dsql_free_statement() function supported only DSQL_close (for closing a named cursor) and
DSQL_drop (which frees the statement handle).

The API addition is:

#define DSQL_close 1
#define DSQL_drop 2
#define DSQL_unprepare 4

Cancel Operation Function
Alex Peshkov

New fb_cancel_operation() API call, allowing cancellation of the current activity being performed by some kind
of blocking API call in the given connection.

Syntax

 ISC_STATUS fb_cancel_operation(ISC_STATUS* status_vector,
 isc_db_handle* db_handle,

http://tracker.firebirdsql.org/browse/CORE-1741

Changes to the Firebird API and ODS

12

 ISC_USHORT option);

Parameters

status vector (ISC_STATUS* status_vector)
A regular status vector pointer structure.

db_handle (pointer to a isc_db_handle)
A regular, valid database handle. It identifies the attachment.

option (unsigned short: symbol)
Determines the action to be performed. The option symbols are:

• fb_cancel_raise: cancels any activity related to the db_handle specified in the second parameter. The
effect will be that, as soon as possible, the engine will try to stop the running request and return an
exception to the caller via the status vector (parameter 1).

“..as soon as possible” will be, under normal conditions, at the next rescheduling point.

• fb_cancel_disable: disables execution of fb_cancel_raise requests for the specified attachment. It can be
useful when your program is executing critical operations, such as cleanup, for example.

• fb_cancel_enable: re-enables delivery of a cancel execution that was previously disabled. The 'cancel'
state is effective by default, being initialized when the attachment is created.

Usage

The cycle of fb_cancel_disable and fb_cancel_enable requests may be repeated as often as necessary. If the
engine is already in the requested state there is no exception: it is simply a no-op.

Usually fb_cancel_raise is called when you need to stop a long-running request. It is called from a separate
thread, not from the signal handler, because it is not async signal safe.

Pay attention to asynchronous nature of this API call!

Another aspect of asynchronous execution is that, at the end of API call, the attachment's activity might be
cancelled or it might not. The latter is always a possibility. The asynchronicity also means that returned status
vector will almost always return FB_SUCCESS. Exceptions, though, are possible: a network packet error, for
example.

An Example

Thread A:
fb_cancel_operation(isc_status, &DB, fb_cancel_enable);
isc_dsql_execute_immediate(isc_status, &DB, &TR, 0, "long running statement", 3, NULL);
// waits for API call to finish...

 Thread B:
 fb_cancel_operation(local_status, &DB, fb_cancel_raise);

Thread A:
if (isc_status[1])

Changes to the Firebird API and ODS

13

 isc_print_status(isc_status); // will print "operation was cancelled"

Shutdown Functions
Alex Peshkov

This release exposes a variety of API functions for instigating server shutdowns of various types from client
applications.

Two Interrelated fb_shutdown* Functions

This release exposes two fb_shutdown* functions that may be useful for embedded server applications:
fb_shutdown() and fb_shutdown_callback.

Prototypes

 typedef int (*FB_SHUTDOWN_CALLBACK)(const int reason, const int mask, void* arg);

 int fb_shutdown(unsigned int timeout,
 const int reason);

 ISC_STATUS fb_shutdown_callback(ISC_STATUS* status_vector,
 FB_SHUTDOWN_CALLBACK callback_function,
 const int mask,
 void* arg);

fb_shutdown()

fb_shutdown() performs a smart shutdown of various Firebird subsystems (yValve, engine, redirector). It was
primarily designed for use by the internal engine, since it is only applicable to the current process. It is exposed
by the API for its possible usefulness to user applications in the embedded server environment.

Currently operational only for the embedded engine, this function terminates all the current activity, rolls back
active transactions, disconnects active attachments and shuts down the embedded engine instance gracefully.

Important for Application Developers

fb_shutdown() does not perform a shutdown of a remote server to which your application might be concur-
rently attached. In fact, all of the Firebird client libraries—including the one in embedded—call it automatically
at exit(), as long as the client is attached to at least one database or service.

Hence, it should never be called by a client in the context of a remote attachment.

Parameters

fb_shutdown() takes two parameters:

1. timeout in milliseconds

2. reason for shutdown

Changes to the Firebird API and ODS

14

The reason codes (const int reason), which are negative, are listed in ibase.h: refer to constants starting
with fb_shutrsn.

Note

When calling fb_shutdown() from your program, you must pass the value as positive, for it will be passed
as an argument to fb_shutdown_callback() by way of your callback_function, the routine where you
would code the appropriate actions.

Return Values

• A return value of zero means shutdown was successful

• A non-zero value means some errors occurred during the shutdown. Details will be written to firebird.
log.

fb_shutdown_callback()

fb_shutdown_callback() sets up the callback function that is to be called during shutdown. It is a call that
almost always returns successfully, although there are cases, such as an out-of-memory condition, which could
cause it to return an error.

Parameters

fb_shutdown_callback() takes four parameters:

status vector (ISC_STATUS* status_vector)
A regular status vector pointer structure.

pointer to callback function (FB_SHUTDOWN_CALLBACK callback_function)
This points to the callback function you have written to perform the actions (if any) to be taken when the
callback occurs.

Your callback function can take three parameters. The first and second parameters help to determine what
action is to be taken in your callback:

1. reason for shutdown

Two shutdown reasons are of especial interest:

• fb_shutrsn_exit_called: Firebird is closing due to exit() or unloaded client/embedded library

• fb_shutrsn_signal, applies only to POSIX: a SIGINT or SIGTERM signal was caught

2. actual value of the mask with which it was called

The purpose of this parameter to help determine whether the callback was invoked before or after engine
shutdown.

3. argument passed to fb_shutdown_callback() by the user application

Can be used for any purpose you like and may be NULL.

Changes to the Firebird API and ODS

15

Return Value from the Callback Function
If the callback function returns zero, it means it performed its job successfully. A non-zero return value is
interpreted according to the call mask (see next parameter topic, below):

• For fb_shut_postproviders calls, it means some errors occurred and it will result in a non-zero value being
returned from fb_shutdown(). It is the responsibility of the callback function to notify the world of the
exact reasons for the error condition being returned.

• For fb_shut_preproviders calls, it means that shutdown will not be performed.

Tip

It is NOT a good idea to return non-zero if the shutdown is due to exit() having been called ! ;-)

call mask (const int mask)
Can have the following symbolic values:

• fb_shut_preproviders: callback function will be called before shutting down engine
• fb_shut_postproviders: callback function will be called after shutting down engine
• An ORed combination of them, to have the same function called in either case

argument (void* arg)
This is the argument to be passed to callback_function.

Using the fb_shutdown Functions

Following is a sample of using the shutdown and shutdown callback feature to prevent your program from being
terminated if someone presses Ctrl-C while it is has database attachments.

#include <ibase.h>

// callback function for shutdown
static int ignoreCtrlC(const int reason, const int, void*)
{
 return reason == fb_shutrsn_signal ? 1 : 0;
}

int main(int argc, char *argv[])
{
 ISC_STATUS_ARRAY status;
 if (fb_shutdown_callback(status, ignoreCtrlC, fb_shut_preproviders, 0))
 {
 isc_print_status(status);
 return 1;
 }
 // your code continues ...
}

New isc_spb_prp_* Constants for Shutdown

The new database shutdown modes can now be set using calls to the Services API. A number of new
isc_spb_prp_* constants are available as arguments.

Changes to the Firebird API and ODS

16

isc_spb_prp_shutdown_mode and isc_spb_prp_online_mode

These arguments are used for shutting down a database and bringing it back on-line, respectively. Each carries
a single-byte parameter to set the new shutdown mode, exactly in accord with the gfix -shut settings:

• isc_spb_prp_sm_normal

• isc_spb_prp_sm_multi

• isc_spb_prp_sm_single

• isc_spb_prp_sm_full

The shutdown request also requires the type of shutdown to be specified, viz., one of

• isc_spb_prp_force_shutdown

• isc_spb_prp_attachments_shutdown

• isc_spb_prp_transactions_shutdown

Each takes a 4-byte integer parameter, specifying the timeout for the shutdown operation requested.

Note

The older-style parameters are also supported and should be used to enter the default shutdown (currently
'multi') and online ('normal') modes.

Usage Examples

Following are a few examples of using the new parameters with the fbsvmgr utility. For simplicity, it is assumed
that login has already been established. Each example, though broken to fit the page-width, is a single line
command.

Shutdown database to single-user maintenance mode:

 fbsvcmgr service_mgr action_properties dbname employee
 prp_shutdown_mode prp_sm_single prp_force_shutdown 0

Next, enable multi-user maintenance:

 fbsvcmgr service_mgr action_properties dbname employee
 prp_online_mode prp_sm_multi

Now go into full shutdown mode, disabling new attachments for the next 60 seconds:

 fbsvcmgr service_mgr action_properties dbname employee
 prp_shutdown_mode prp_sm_full prp_attachments_shutdown 60

Return to normal state:

Changes to the Firebird API and ODS

17

 fbsvcmgr service_mgr action_properties dbname employee
 prp_online_mode prp_sm_normal

Tighter Control Over Header-level Changes
Alex Peshkov

Several DPB parameters have been made inaccessible to ordinary users, closing some dangerous loopholes. In
some cases, they are settings that would alter the database header settings and potentially cause corruptions if
not performed under administrator control; in others, they initiate operations that are otherwise restricted to the
SYSDBA. They are.-

• isc_dpb_shutdown and isc_dpb_online

• isc_dpb_gbak_attach, isc_dpb_gfix_attach and isc_dpb_gstat_attach

• isc_dpb_verify

• isc_dpb_no_db_triggers

• isc_dpb_set_db_sql_dialect

• isc_dpb_sweep_interval

• isc_dpb_force_write

• isc_dpb_no_reserve

• isc_dpb_set_db_readonly

• isc_dpb_set_page_buffers (on Superserver)

The parameter isc_dpb_set_page_buffers can still be used by ordinary users on Classic and it will set
the buffer size temporarily for that user and that session only. When used by the SYSDBA on either Superserver
or Classic, it will change the buffer count in the database header, i.e., make a permanent change to the default
buffer size.

Important Note for Developers and Users of Data Access Drivers and Tools

This change will affect any of the listed DPB parameters that have been explicitly set, either by including
them in the DPB implementation by default property values or by enabling them in tools and applications
that access databases as ordinary users. For example, a Delphi application that included 'RESERVE PAGE
SPACE=TRUE' and 'FORCED WRITES=TRUE' in its database Params property, which caused no problems
when the application connected to Firebird 1.x, 2.0.1. 2.0.3, 2.04 or 2.1.0/2.1.1, now rejects a connection by a
non-SYSDBA user with ISC ERROR CODE 335544788, “Unable to perform operation. You must be either
SYSDBA or owner of the database.”

New Trace Services for Applications
Vlad Khorsun

Five new services relating to the management of the new user trace sessions have been added to the Services
Manager, each with its corresponding Services API action function.

Changes to the Firebird API and ODS

18

isc_action_svc_trace_start

Starts a user trace session

Parameter(s)

 isc_spb_trc_name : trace session name, string, optional
 isc_spb_trc_cfg : trace session configuration, string, mandatory

The mandatory parameter is a string encompassing the text for the desired configuration. A template file named
fbtrace.conf is provided in Firebird's root directory as a guide to the contents of this string.

Note

1. Unlike system audit sessions, a user session does not read the configuration from a file. It will be the
responsibility of the application developer to devise a mechanism for storing configurations locally at the
client and retrieving them for run-time use.

2. Superfluous white space in the string is fine: it will simply be ignored.

Output

Results of the trace session in text format.

isc_action_svc_trace_stop

Stops a designated trace session

Parameter(s)

 isc_spb_trc_id : trace session ID, integer, mandatory

Output

A text message providing the result (status) of the request:

• Trace session ID NNN stopped
• No permissions to stop other user trace session
• Trace session ID NNN not found

isc_action_svc_trace_suspend

Suspends a designated trace session

Parameter(s)

 isc_spb_trc_id : trace session ID, integer, mandatory

Changes to the Firebird API and ODS

19

Output

A text message providing the result (status) of the request:

• Trace session ID NNN paused
• No permissions to change other user trace session
• Trace session ID NNN not found

isc_action_svc_trace_resume

Resumes a designated trace session that has been suspended

Parameter(s)

 isc_spb_trc_id : trace session ID, integer, mandatory

Output

A text message providing the result (status) of the request:

• Trace session ID NNN resumed
• No permissions to change other user trace session
• Trace session ID NNN not found

isc_action_svc_trace_list

Lists existing trace sessions

No parameters

Output

A text message listing the trace sessions and their states:

• Session ID: <number>
• name: <string>. Prints the trace session name if it is not empty
• user: <string>. Prints the user name of the user that created the trace session
• date: YYYY-MM-DD HH:NN:SS, start date and time of the user session
• flags: <string>, a comma-separated set comprising some or all of the following:

active | suspend
Run state of the session.

admin
Shows admin if an administrator user created the session. Absent if an ordinary user created the session.

system
Shows system if the session was created by the Firebird engine (system audit session). Absent if an ordi-
nary user created the session.

audit | trace
Indicates the kind of session: audit for an engine-created audit session or trace for a user trace session.

Changes to the Firebird API and ODS

20

log full
Conditional, appears if it is a user trace session and the session log file is full.

Note

The output of each service can usually be obtained using a regular isc_service_query call with either of the
isc_info_svc_line or isc_info_svc_to_eof information items.

Other Services API Additions
Alex Peshkov

Other additions to the Services API include:

Mapping for RDB$ADMIN Role in Services API

Two tag items have been added to the services parameter block (SPB) to to enable or disable the RDB$ADMIN
role for a privileged operating system user when requesting access to the security database.

Note

This capability is implemented in the gsec utility by way of the new -mapping switch. Refer to the relevant
notes in the relevant section of the Command-line Utilities chapter.

Tag Item isc_action_svc_set_mapping

Enables the RDB$ADMIN role for the appointed OS user for a service request to access security2.fdb.

Tag Item isc_action_svc_drop_mapping

Disables the RDB$ADMIN role for the appointed OS user for a service request to access security2.fdb.

Tag item isc_spb_bkp_no_triggers

This new SPB tag reflects the Services API side of the -nodbtriggers switch introduced in the gbak utili-
ty at V.2.1 to prevent database-level and transaction-level triggers from firing during backup and restore. It
is intended for use as a member of the isc_spb_options set of optional directives that includes items like
isc_spb_bkp_ignore_limbo, etc.

nBackup Support

Tracker reference: CORE-1758.

The nBackup utility performs two logical groups of operations: locking or unlocking a database and backing
it up or restoring it. While there is no rationale for providing a service action for the lock/unlock operations—
they can be requested remotely by way of an SQL language request for ALTER DATABASE—a Services API
interface to the backup/restore operations is easily justified.

http://tracker.firebirdsql.org/browse/CORE-1758

Changes to the Firebird API and ODS

21

Backup and restore must be run on the host station and the only way to access them was by running nBackup.

The two new service actions now enabling nBackup backup and restore to be requested through the Services
API are:

• isc_action_svc_nbak - incremental nbackup
• isc_action_svc_nrest - incremental database restore

The parameter items are:

• isc_spb_nbk_level - backup level (integer)
• isc_spb_nbk_file - backup file name (string)
• isc_spb_nbk_no_triggers - option to suppress database triggers

Usage Examples

Following are a few examples of using the new parameters with the fbsvcmgr utility. For simplicity, it is assumed
that login has already been established. Each example, though broken to fit the page-width, is a single line
command.

Create backup level 0:

 fbsvcmgr service_mgr action_nbak dbname employee
 nbk_file e.nb0 nbk_level 0

Create backup level 1:

 fbsvcmgr service_mgr action_nbak dbname employee
 nbk_file e.nb1 nbk_level 1

Restore database from those files:

 fbsvcmgr service_mgr action_nrest dbname e.fdb
 nbk_file e.nb0 nbk_file e.nb1

22

Chapter 5

New Reserved
Words and Changes

The following keywords have been added, or have changed status, since Firebird 2.1. Those marked with an
asterisk (*) are not present in the SQL standard.

Newly Reserved Words

 SIMILAR

Keywords Added as Non-reserved

 AUTONOMOUS *
 BIN_NOT *
 CALLER *
 CHAR_TO_UUID *
 COMMON *
 DATA
 FIRSTNAME *
 GRANTED
 LASTNAME *
 MIDDLENAME *
 MAPPING *
 OS_NAME *
 SOURCE *
 TWO_PHASE *
 UUID_TO_CHAR *

23

Chapter 6

Configuration Parameter
Additions and Changes

The following changes or additions to firebird.conf should be noted:

AuditTraceConfigFile
V. Khorsun

This parameter points to the name and location of the file that the Firebird engine is to read to determine the list
of events required for the next system audit trace. By default, the value of this parameter is empty, indicating
that no system audit tracing is configured.

Note

The template file file fbtrace.conf, found in Firebird's root directory, contains the full list of available
events, with format, rules and syntax for composing an audit trace configuration file.

For more information, see the topic System Audit Session in section [Trace and Audit Services] in the chapter
about the new administrative features.

Authentication
A. Peshkov

On Windows server platforms, since V.2.1, Authentication has been used for configuring the server authentica-
tion mode if you need it to be other than the default.

The mode settings for v.2.5 are the same, viz.

• trusted makes use of Windows “trusted authentication”. Under the right conditions, this may be the most
secure way to authenticate on Windows.

• native sets the traditional Firebird server authentication mode, requiring users to log in using a user name
and password defined in the security database.

• mixed allows both.

Changes in V.2.5

• Under v.2.5, although the modes are unchanged, configuring 'mixed' or 'trusted' mode no longer confers
SYSDBA privileges on Windows domain administrators automatically by default. Please read the notes in
the Administrative Features chapter regarding the new RDB$ADMIN role in ODS 11.2 databases and au-
to-mapping SYSDBA privileges to domain administrators.

Configuration Parameter Additions and Changes

24

• The default configuration has been changed from mixed to native. To have enable user authentication (whether
mixed or trusted, it is now necessary to configure this parameter specifically.

Tracker reference CORE-2376)

MaxUserTraceLogSize
V. Khorsun

Stores the maximum total size of the temporary files to be created by a user trace session using the new Trace
functions in the Services API. The default limit is 10 MB. Use this parameter to raise or lower the maximum
total size of the temporary files storing the output.

OldSetClauseSemantics
D. Yemanov

Before Firebird 2.5, the SET clause of the UPDATE statement assigned columns in the user-defined order, with
the NEW column values being immediately accessible to the subsequent assignments. This did not conform to
the SQL standard, which requires the starting value of the column to persist during execution of the statement.

Now, only the OLD column values are accessible to any assignment in the SET clause.

The OldSetClauseSemantics enables you to revert to the legacy behavior via the OldSetClauseSemantics, if
required. Values are 1 for the legacy behaviour, 0 (the default) for the corrected behaviour.

Warning

• Changing this parameter affects all databases on your server.

• This parameter is provided as a temporary solution to resolve backward compatibility issues. It will be
deprecated in future Firebird versions.

Use Hostname for RemoteBindAddress
A. Peshkov

Tracker entry: CORE-2094)

It is now possible to use the hostname of the host where the Firebird server is running to configure Remote-
BindAddress, where previously, only an IP address was allowed.

Important

RemoteBindAddress can be used to “pin” user connections to a specific NIC card on the host server. Take
care that the hostname specified is not associated concurrently with more than one IP address, anywhere! In
particular, check the etc/hosts file on all stations, including the host station itself.

http://tracker.firebirdsql.org/browse/CORE-2376
http://tracker.firebirdsql.org/browse/CORE-2094

25

Chapter 7

Administrative Features
Certain improvements to Firebird's administrative features will be welcomed by many.

New RDB$ADMIN System Role
Alex Peshkov

A new pre-defined system role RDB$ADMIN has been added for transferring SYSDBA privileges to another
user. Any user, when granted the role in a particular database, acquires SYSDBA-like rights when attaching to
that database with the RDB$ADMIN role specified.

To assign it, SYSDBA should log in to that database and grant the role RDB$ADMIN to the user, in the same
way one would grant any other role to a user.

The following example transfers SYSDBA privileges to users named User1 and Admins\ADMINS. The second
user in our example is typical for a Windows system user with access via trusted authentication:

GRANT RDB$ADMIN TO User1;
GRANT RDB$ADMIN TO "Admins\ADMINS";

Note

For Windows trusted authentication, a database can be set up to provide the RDB$ADMIN role to Windows
Administrators automatically. This is described in more detail presently.

Windows Domain Administrators

On POSIX hosts, the root user always had SYSDBA privileges, but the same was not possible for a domain
administrator on Windows until Firebird 2.1. There, a configuration parameter, Authentication, was introduced
whereby a user logged in as a Windows domain administrator could automatically gain server access with SYS-
DBA privileges through trusted user authentication. The mechanism for achieving that has changed with the
introduction of the new system role and associated behaviour in v.2.5.

Automatically Mapping RDB$ADMIN to a Windows User

The situation has not changed for the root user on POSIX but, on Windows, a domain administrator must now
be granted the RDB$ADMIN role in order to get SYSDBA access. By default, the SYSDBA must perform this
GRANT manually for any user, including a domain administrator. However, the SYSDBA can configure it to
happen automatically for Windows Administrators if the Authentication parameter in firebird.conf is 'mixed'
or 'trusted'.

Administrative Features

26

The default for the Authentication parameter has changed!

By default, under V.2.5, Windows trusted authentication is not available. It must be specifically enabled in
firebird.conf, by configuring the Authentication parameter as either trusted or mixed.

New ALTER ROLE Statement

A new ALTER ROLE syntax is is implemented for this specialised purpose.

To configure a database to auto-grant the RDB$ADMIN role to Administrators, use the following statement:

ALTER ROLE RDB$ADMIN
 SET AUTO ADMIN MAPPING;

To revert to the default setting, preventing administrators from getting SYSDBA privileges automatically, issue
this statement:

ALTER ROLE RDB$ADMIN
 DROP AUTO ADMIN MAPPING;

Escalating RDB$ADMIN Scope

Because security2.fdb is created as (or should be upgraded to) an ODS 11.2 database, it has the pre-defined RDB
$ADMIN role, too. SYSDBA can grant RDB$ADMIN in security2.fdb to a user if that user needs the same
rights as SYSDBA to administer all other users through gsec or the Services API, i.e., create and drop users
or alter any user.

The auto-mapping facility described above is also applicable, if required.

Important

If the user attaches with a user database role passed in the DPB (connection parameters), it will not be replaced
with RDB$ADMIN, i.e., he/she will not get SYSDBA rights.

Trace and Audit Services
Vlad Khorsun

The new trace and audit facilities in v.2.5 were initially developed from the TraceAPI contributed to us by
Nickolay Samofatov that he had developed for the Red Soft Database, a commercial product based on Firebird's
code.

Overview of Features

The new trace and audit facilities enable various events performed inside the engine, such as statement execu-
tion, connections, disconnections, etc., to be logged and collated for real-time analysis of the corresponding
performance characteristics.

Administrative Features

27

A trace takes place in the context of a trace session. Each trace session has its own configuration, state and output.

The Firebird engine has a fixed list of events it can trace. It can perform two different sort of traces: a system audit
and a user trace. How the engine forms the list of events for a session depends on which sort of trace is requested.

The System Audit Session

A system audit session is started by the engine itself. To determine which events the session is “interested in”,
it reads the contents of a trace configuration file as it goes to create the session.

A new parameter in firebird.conf, AuditTraceConfigFile points to the name and location of the file. There
can be at most one system audit trace in progress. By default, the value of this parameter is empty, indicating
that no system audit tracing is configured.

A configuration file contains list of traced events and points to the placement of the trace log(s) for each event.
It is sufficiently flexible to allow different sets of events for different databases to be logged to separate log
files. The template file file fbtrace.conf, found in Firebird's root directory, contains the full list of available
events, with format, rules and syntax for composing an audit trace configuration file.

User Trace Sessions

A user trace session is managed by user, using some new calls to the Services API. There are five new service
functions for this purpose:

• start: isc_action_svc_trace_start
• stop: isc_action_svc_trace_stop
• suspend: isc_action_svc_trace_suspend
• resume: isc_action_svc_trace_resume
• list all known trace sessions: isc_action_svc_trace_list

The syntax for the Services API calls are discussed in the topic New Trace Functions for Applications in the
chapter entitled Changes to the Firebird API and ODS.

Workings of a User Trace Session

When a user application starts a trace session, it sets a session name (optional) and the session configuration
(mandatory). The session configuration is a text file conforming to the rules and syntax modelled in the fb-
trace.conf template that is in Firebird's root directory, apart from the lines relating to placement of the output.

Note

Such files obviously do not live on the server. It will be the job of the application developer to design a suitable
mechanism for storing and retrieving texts for passing in the user trace request.

For example, the command-line fbsvcmgr utility supports a saved-file parameter, trc_cfg.

The output of a user session is stored in set of temporary files, each of 1 MB. Once a file has been completely
read by the application, it is automatically deleted. By default, the maximum total size of the output is limited
to 10 MB. It can be changed to a smaller or larger value using the MaxUserTraceLogSize in firebird.conf.

Administrative Features

28

Once the user trace session service has been started by the application, the application has to read its output,
using calls to isc_service_query(). The service could be generating output faster than the application can read
it. If the total size of the output reaches the MaxUserTraceLogSize limit, the engine automatically suspends the
trace session. Once the application has finished reading a file (a 1 MB part of the output) that file is deleted,
capacity is returned and the engine resumes the trace session automatically.

At the point where the application decides to stop its trace session, it simply requests a detach from the service.
Alternatively, the application can use the isc_action_svc_trace_* functions to suspend, resume or stop the trace
session at will.

Who Can Manage Trace Sessions?

Any user can initiate and manage a trace session. An ordinary user can request a trace only on its own connections
and cannot manage trace sessions started by any other users. Administrators can manage any trace session.

Abnormal Endings

If all Firebird processes are stopped, no user trace sessions are preserved. What this means is that if a Superserver
or Superclassic process is shut down, any user trace sessions that were in progress, including any that were
awaiting a resume condition, are fully stopped and a resume cannot restart them.

Note

This situation doesn't apply to the Classic server, of course, since each connection involves its own dedicated
server instance. Thus, there is no such thing as “shutting down” a Classic server instance. No service instance
can outlive the connection that instigated it.

User Trace Sample Configuration Texts

The following samples provide a reference for composing configuration texts for user trace sessions.

a. Trace prepare, free and execution of all statements within connection 12345

<database mydatabase.fdb>
 enabled true
 connection_id 12345
 log_statement_prepare true
 log_statement_free true
 log_statement_start true
 log_statement_finish true
 time_threshold 0
</database>

b. Trace all connections of given user to database mydatabase.fdb, logging executed INSERT, UPDATE
and DELETE statements and nested calls to procedures and triggers, and show corresponding PLANs and
performance statistics.

<database mydatabase.fdb>
 enabled true
 include_filter %(INSERT|UPDATE|DELETE)%

Administrative Features

29

 log_statement_finish true
 log_procedure_finish true
 log_trigger_finish true
 print_plan true
 print_perf true
 time_threshold 0
</database>

Command-line Requests for User Trace Services

At this stage there is no specialized, stand-alone utility to work with trace services. However, the general Services
utility, fbsvcmgr, is available for submitting service requests from the command line, as exemplified in the
following samples.

a. Start a user trace named “My trace” using a configuration file named fbtrace.conf and read its output
on the screen:

 fbsvcmgr service_mgr action_trace_start trc_name "My trace" trc_cfg fbtrace.conf

To stop this trace session, press Ctrl+C at the fbsvcmgr console prompt. (See also (e), below).

b. List trace sessions:

 fbsvcmgr service_mgr action_trace_list

c. Suspend trace sesson with ID 1

 fbsvcmgr service_mgr action_trace_suspend trc_id 1

d. Resume trace sesson with ID 1

 fbsvcmgr service_mgr action_trace_resume trc_id 1

e. Stop trace sesson with ID 1

 fbsvcmgr service_mgr action_trace_stop trc_id 1

Tip

List sessions (see b.) in another console, look for the ID of a session of interest and use it in the current
console to stop the session.

Use Cases

There are three general use cases:

Administrative Features

30

1. Constant audit of engine activity

This is served by system audit trace. Administrator creates or edits the trace configuration file, sets its name
via the AuditTraceConfigFile setting in firebird.conf and restarts Firebird. Later, the administrator could
suspend, resume or stop this session without needing to restart Firebird.

Important

To make audit configuration changes known to the engine, Firebird must be restarted.

2. On-demand interactive trace of some (or all) activity in some (or all) databases

An application (which could be the fbsvcmgr utility) starts user trace session, reads its output and shows
traced events to the user in real time on the screen. The user can suspend and resume the trace and, finally,
stop it.

3. Engine activity collection for a significant period of time (a few hours or perhaps even a whole day)
for later analysis

An application starts a user trace session, reading the trace output regularly and saving it to one or more
files. The session must be stopped manually, by the same application or by another one. If multiple trace
sessions are running, a listing can be requested in order to identify the session of interest.

Monitoring Improvements
Dmitry Yemanov

Firebird 2.5 sees the enhancement of the “MON$” database monitoring features introduced in V.2.1, with new
tables delivering data about context variables and memory usage in ODS 11.2 and higher databases. Also, in
these databases, it becomes possible to terminate a client connection from another connection through the MON
$ structures.

Extended Access for Ordinary Users

The original design allowed non-privileged database users to see monitoring information pertaining only to
their CURRENT_CONNECTION. Now they can request information for any attachment that was authenticated
using the same user name.

Tracker reference CORE-2233.

Notes

1. For an application architecture that entails a middleware tier logging in multiple times concurrently with
the same user name on behalf of different end users, consideration should be given to the impact on
performance and privacy of exposing the monitoring features to the end users.

2. The same extension was implemented in V.2.1.2.

http://tracker.firebirdsql.org/browse/CORE-2233

Administrative Features

31

New MON$ Metadata for ODS 11.2 Databases

Note

Please refer to the V.2.1 documentation for the ODS 11.1 metadata.

MON$MEMORY_USAGE (current memory usage)

 - MON$STAT_ID (statistics ID)
 - MON$STAT_GROUP (statistics group)
 0: database
 1: attachment
 2: transaction
 3: statement
 4: call
 - MON$MEMORY_USED (number of bytes currently in use)
 High-level memory allocations performed by the engine from its pools.
 Can be useful for tracing memory leaks and for investigating unusual
 memory consumption and the attachments, procedures, etc. that might
 be responsible for it.
 - MON$MEMORY_ALLOCATED (number of bytes currently allocated at the OS level)
 Low-level memory allocations performed by the Firebird memory manager.
 These are bytes actually allocated by the operating system, so it enables
 the physical memory consumption to be monitored.

Note

Not all records have non-zero values. On the whole, only MON$DATABASE and memory-bound objects
point to non-zero “allocated” values. Small allocations are not allocated at this level, being redirected to
the database memory pool instead.

 - MON$MAX_MEMORY_USED (maximum number of bytes used by this object)
 - MON$MAX_MEMORY_ALLOCATED (maximum number of bytes allocated from
 the operating system by this object)

MON$CONTEXT_VARIABLES (known context variables)

 - MON$ATTACHMENT_ID (attachment ID)
 Contains a valid ID only for session-level context variables.
 Transaction-level variables have this field set to NULL.
 - MON$TRANSACTION_ID (transaction ID)
 Contains a valid ID only for transaction-level context variables.
 Session-level variables have this field set to NULL.
 - MON$VARIABLE_NAME (name of context variable)
 - MON$VARIABLE_VALUE (value of context variable)

Administrative Features

32

Memory Usage in MON$STATEMENTS and MON$STATE

Memory usage statistics in MON$STATEMENTS and MON$STATE represent actual CPU consumption.

Tracker reference: CORE-1583)

Usage Notes

Examples

“Top 10” statements ranked according to their memory usage:

SELECT FIRST 10
 STMT.MON$ATTACHMENT_ID,
 STMT.MON$SQL_TEXT,
 MEM.MON$MEMORY_USED
FROM MON$MEMORY_USAGE MEM
 NATURAL JOIN MON$STATEMENTS STMT
 ORDER BY MEM.MON$MEMORY_USED DESC

To enumerate all session-level context variables for the current connection:

SELECT
 VAR.MON$VARIABLE_NAME,
 VAR.MON$VARIABLE_VALUE
FROM MON$CONTEXT_VARIABLES VAR
 WHERE VAR.MON$ATTACHMENT_ID = CURRENT_CONNECTION

Terminating a Client

The MON$ structures are, by design, read-only. Thus, user DML operations on them are prohibited. However,
a mechanism is built in to allow deleting (only) of records in the MON$STATEMENTS and MON$ATTACH-
MENTS tables. The effect of this mechanism is to make it possible, respectively, to cancel running statements
and, for ODS 11.2 databases, to terminate client sessions.

To cancel all current activity for a specified connection:

DELETE FROM MON$STATEMENTS
 WHERE MON$ATTACHMENT_ID = 32

To disconnect all clients except the “Me” connection:

DELETE FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

http://tracker.firebirdsql.org/browse/CORE-1583

Administrative Features

33

Note

1. • A statement cancellation attempt becomes a void operation (“no-op”) if the client has no statements
currently running.

• Upon cancellation, the execute/fetch API call returns the isc_cancelled error code.

• Subsequent operations are allowed.

2. • Any active transactions in the connection being terminated will have their activities cancelled imme-
diately and they are rolled back.

• Once terminated, the client session receives the isc_att_shutdown error code.

• Subsequent attempts to use this connection handle will cause network read/write errors.

34

Chapter 8

Security Hardening

Windows Platforms

No SYSDBA Auto-mapping (Windows)

In V.2.1, members of administrative Windows groups were mapped to SYSDBA by default. From V.2.5 forward,
SYSDBA mapping is controlled on per-database basis using the new SQL command

ALTER ROLE RDB$ADMIN SET/DROP AUTO ADMIN MAPPING

35

Chapter 9

Data Definition
Language (DDL)

V.2.5 brings a few significant additions and enhancements to DDL.

Quick Links

• CREATE/ALTER/DROP USER
• Syntaxes for Altering Views
• SSP Extension for CREATE VIEW
• ALTER Mechanism for Computed Columns
• GRANTED BY Extension for GRANT and REVOKE
• ALTER ROLE
• REVOKE ALL
• Default COLLATION Attribute for a Database
• ALTER CHARACTER SET

Although this release emphasises architectural changes in the movement towards Firebird 3, a number of im-
provements and extensions have been implemented, in many cases as a response to feature requests in the Track-
er.

Visibility of Procedure Definition Changes on Classic
Dmitry Yemanov

Tracker reference CORE-2052.

One such change addressed the problem of the visibility of altered stored procedures to other connections to the
Classic server. Now, such changes are made visible to the entire server as soon as the modifying transaction
has completed its commit.

CREATE/ALTER/DROP USER
Alex Peshkov

Tracker reference CORE-696.

In v.2.5, Firebird finally has syntax to enable user accounts on the server to be managed by submitting SQL
statements when logged in to a regular database.

Syntax Patterns

A user with SYSDBA privileges can add a new user:

CREATE USER <username> {PASSWORD 'password'}
 [FIRSTNAME 'firstname']

http://tracker.firebirdsql.org/browse/CORE-2052
http://tracker.firebirdsql.org/browse/CORE-696

Data Definition Language (DDL)

36

 [MIDDLENAME 'middlename']
 [LASTNAME 'lastname'];

Note

The PASSWORD clause is required when creating a new user. It should be the initial password for that new
user. (The user can change it later, using ALTER USER.)

A user with SYSDBA privileges can change one or more of the password and proper name attributes of an
existing user. Non-privileged users can use this statement to alter only their own attributes.

ALTER USER <username>
 [PASSWORD 'password']
 [FIRSTNAME 'firstname']
 [MIDDLENAME 'middlename']
 [LASTNAME 'lastname'];

Note

At least one of PASSWORD, FIRSTNAME, MIDDLENAME or LASTNAME must be present.

ALTER USER does not allow the <username> to be changed. If a different <username> is required, the old
one should be deleted (dropped) and a new one created.

A user with SYSDBA privileges can delete a user:

DROP USER <username>;

Restrictions

CREATE and DROP statements are available only for the SYSDBA or a user that has been granted the RDB
$ADMIN role in the security database. An ordinary user can ALTER his own password and elements of his
proper name. An attempt to modify another user will fail.

Examples

CREATE USER alex PASSWORD 'test';

ALTER USER alex FIRSTNAME 'Alex' LASTNAME 'Peshkov';

ALTER USER alex PASSWORD 'IdQfA';

DROP USER alex;

Tip

Firebird 2.5 does not allow you to set up more than one security database on a server. From V.3.0, it is intended
to be possible to have separate security databases for each database. For now, you can be connected to any
database on the server (even employee.fdb) to update its one-and-only security2.fdb.

In future, it will be essential to send these requests from a database that is associated with the security database
that is to be affected by them.

Data Definition Language (DDL)

37

Syntaxes for Altering Views
Adriano dos Santos Fernandes

Previously, in order to alter a view definition, it was necessary to save the view definition off-line somewhere
and drop the view, before recreating it with its changes. This made things very cumbersome, especially if there
were dependencies. V.2.5 introduces syntaxes for ALTER VIEW and CREATE OR ALTER VIEW.

Tracker references are CORE-770 and CORE-1640.

ALTER VIEW

ALTER VIEW enables a view definition to be altered without the need to recreate (drop and create) the old
version of the view and all of its dependencies.

CREATE OR ALTER VIEW

With CREATE OR ALTER VIEW, the view definition will be altered (as with ALTER VIEW) if it exists, or
created if it does not exist.

Syntax Pattern

create [or alter] | alter } view <view_name>
 [(<field list>)]
as <select statement>

Example

create table users (
 id integer,
 name varchar(20),
 passwd varchar(20)
);

create view v_users as
 select name from users;

alter view v_users (id, name) as
 select id, name from users;

ATTENTION: Known Issue

It was discovered that ALTER VIEW (and probably CREATE OR ALTER VIEW) is able to remove a column
used in a stored procedure or trigger, without raising a dependency exception at compile time.

This bug (CORE-2386) will be addressed before the next Beta.

http://tracker.firebirdsql.org/browse/CORE-770
http://tracker.firebirdsql.org/browse/CORE-1640
http://tracker.firebirdsql.org/browse/CORE-2386

Data Definition Language (DDL)

38

Extension for CREATE VIEW
Adriano dos Santos Fernandes

Tracker reference CORE-886.

A selectable stored procedure can now be specified in the FROM clause of a view definition.

Example

 create view a_view as
 select * from a_procedure(current_date);

ALTER Mechanism for Computed Columns
Adriano dos Santos Fernandes

Tracker reference CORE-1454.

A column defined as COMPUTED BY <expression> can now be altered using the ALTER TABLE...ALTER
COLUMN syntax. This feature can be used only to change the <expression> element of the column definition
to a different expression. It cannot convert a computed column to non-computed or vice versa.

Syntax Pattern

alter table <table-name>
 alter <computed-column-name>
 [type <data-type>]
 COMPUTED BY (<expression>);

Examples

create table test (
 n integer,
 dn computed by (n * 2)
);
commit;
alter table test
 alter dn computed by (n + n);

Extensions for SQL Permissions
Alex Peshkov

The following extensions have been implemented in the area of SQL permissions (privileges).

GRANTED BY Clause

A GRANTED BY or GRANTED AS clause can now be optionally included in GRANT and REVOKE state-
ments, enabling the grantor to be a user other than the CURRENT_USER (the default).

http://tracker.firebirdsql.org/browse/CORE-886
http://tracker.firebirdsql.org/browse/CORE-1454

Data Definition Language (DDL)

39

Syntax Pattern

grant <right> to <object>
 [{ granted by | as } [user] <username>]
--
revoke <right> from <object>
 [{ granted by | as } [user] <username>]

Tip

GRANTED BY and GRANTED AS are equivalent. GRANTED BY is the form recommended by the SQL
standard. We support GRANTED AS for compatibility with some other servers (Informix, for example).

Example

Logged in as SYSDBA:

create role r1; -- SYSDBA owns the role
 /* next, SYSDBA grants the role to user1
 with the power to grant it to others */
grant r1 to user1 with admin option;
 /* SYSDBA uses GRANTED BY to exercise
 user1's ADMIN OPTION */
grant r1 to public granted by user1;

In isql, we look at the effects:

 SQL>show grant;
 /* Grant permissions for this database */
 GRANT R1 TO PUBLIC GRANTED BY USER1
 GRANT R1 TO USER1 WITH ADMIN OPTION
 SQL>

ALTER ROLE

Tracker reference CORE-1660.

The new ALTER ROLE statement has a specialised function to control the assignment of SYSDBA permissions
to Windows administrators during trusted authentication. It has no other purpose currently.

For usage details, see the topic in the Administrative Features chapter, entitled Automatically Mapping RDB
$ADMIN to a Windows User.

REVOKE ALL

Tracker reference CORE-2113.

When a user is removed from the security database or another authentication source, such as the operating system
ACL, any associated cleanup of SQL privileges in databases has to be performed manually. This extension adds
the capability to revoke all privileges in one stroke from a particular user or role.

http://tracker.firebirdsql.org/browse/CORE-1660
http://tracker.firebirdsql.org/browse/CORE-21130

Data Definition Language (DDL)

40

Syntax Pattern

REVOKE ALL ON ALL FROM { <user list> | <role list> }

Example

Logged in as SYSDBA:

gsec -del guest
isql employee
fbs bin # ./isql employee
Database: employee
SQL> REVOKE ALL ON ALL FROM USER guest;
SQL>

Default COLLATION Attribute for a Database
Adriano dos Santos Fernandes

Tracker references CORE-1737 and CORE-1803.

An ODS 11.2 or higher database can now have a default COLLATION attribute associated with the default
character set, enabling all text column, domain and variable definitions to be created with the same collation
order unless a COLLATE clause for a different collation is specified.

The COLLATION clause is optional. If it is omitted, the default collation order for the character set is used.

Tip

Note also that the default collation order for a character set used in a database can now also be changed, thanks
to the introduction of syntax for ALTER CHARACTER SET.

Syntax Pattern

create database <file name>
 [page_size <page size>]
 [length = <length>]
 [user <user name>]
 [password <user password>]
 [set names <charset name>]
 [default character set <charset name>
 [collation <collation name>]]
 [difference file <file name>]

Example

create database 'test.fdb'
 default character set win1252
 collation win_ptbr;

http://tracker.firebirdsql.org/browse/CORE-1737
http://tracker.firebirdsql.org/browse/CORE-1803

Data Definition Language (DDL)

41

ALTER CHARACTER SET Command
Adriano dos Santos Fernandes

Tracker reference CORE-1803.

New syntax introduced in this version, enabling the default collation for a character set to be set for a database.

The default collation is used when table columns are created with a given character set (explicitly, through a
CHARACTER SET clause in the column or domain definition, or implicitly, through the default character set
attribute of the database) and no COLLATION clause is specified.

Note

String constants also use the default collation of the connection character set.

Syntax Pattern

ALTER CHARACTER SET <charset_name>
 SET DEFAULT COLLATION <collation_name>

Example

create database 'people.fdb'
 default character set win1252;

alter character set win1252
 set default collation win_ptbr;

create table person (
 id integer,
 name varchar(50) /* will use the database default
 character set and the win1252
 default collation */
);

insert into person
 values (1, 'adriano');
insert into person
 values (2, 'ADRIANO');

/* will retrieve both records
 because win_ptbr is case insensitive */
select * from person where name like 'A%';

Tip

Another improvement allows the current value of RDB$DEFAULT_COLLATE_NAME in the system table
RDB$CHARACTER_SETS to survive the backup/restore cycle.

http://tracker.firebirdsql.org/browse/CORE-1803

42

Chapter 10

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in Firebird 2.5.

Quick Links

• RegEx Search Support using SIMILAR TO
• Hex Literal Support
• New UUID Conversion Functions
• Extension to LIST() Function
• SOME_COL = ? OR ? IS NULL Predication
• Optimizer Improvements

RegEx Search Support using SIMILAR TO
Adriano dos Santos Fernandes

Tracker reference CORE-769.

A new SIMILAR TO predicate is introduced to support regular expressions. The predicate's function is to verify
whether a given SQL-standard regular expression matches a string argument. It is valid in any context that
accepts Boolean expressions, such as WHERE clauses, CHECK constraints and PSQL IF() tests.

Syntax Patterns

<similar predicate> ::=
 <value> [NOT] SIMILAR TO <similar pattern> [ESCAPE <escape character>]

<similar pattern> ::= <character value expression: regular expression>

<regular expression> ::=
 <regular term>
 | <regular expression> <vertical bar> <regular term>

<regular term> ::=
 <regular factor>
 | <regular term> <regular factor>

<regular factor> ::=
 <regular primary>
 | <regular primary> <asterisk>
 | <regular primary> <plus sign>
 | <regular primary> <question mark>

http://tracker.firebirdsql.org/browse/CORE-769

Data Manipulation Language (DML)

43

 | <regular primary> <repeat factor>

<repeat factor> ::=
 <left brace> <low value> [<upper limit>] <right brace>

<upper limit> ::= <comma> [<high value>]

<low value> ::= <unsigned integer>

<high value> ::= <unsigned integer>

<regular primary> ::=
 <character specifier>
 | <percent>
 | <regular character set>
 | <left paren> <regular expression> <right paren>

<character specifier> ::=
 <non-escaped character>
 | <escaped character>

<regular character set> ::=
 <underscore>
 | <left bracket> <character enumeration>... <right bracket>
 | <left bracket> <circumflex> <character enumeration>... <right bracket>
 | <left bracket> <character enumeration include>... <circumflex> <character enumeration exclude>...
 <right bracket>

<character enumeration include> ::= <character enumeration>

<character enumeration exclude> ::= <character enumeration>

<character enumeration> ::=
 <character specifier>
 | <character specifier> <minus sign> <character specifier>
 | <left bracket> <colon> <character class identifier> <colon> <right bracket>

<character specifier> ::=
 <non-escaped character>
 | <escaped character>

<character class identifier> ::=
 ALPHA
 | UPPER
 | LOWER
 | DIGIT
 | SPACE
 | WHITESPACE
 | ALNUM

Note

1. <non-escaped character> is any character except <left bracket>, <right bracket>, <left paren>, <right
paren>, <vertical bar>, <circumflex>, <minus sign>, <plus sign>, <asterisk>, <underscore>, <percent>,
<question mark>, <left brace> and <escape character>.

2. <escaped character> is the <escape character> succeeded by one of <left bracket>, <right bracket>, <left
paren>, <right paren>, <vertical bar>, <circumflex>, <minus sign>, <plus sign>, <asterisk>, <under-
score>, <percent>, <question mark>, <left brace> or <escape character>.

Data Manipulation Language (DML)

44

Table 10.1. Character class identifiers

Identifier Description Note

ALPHA All characters that are simple latin letters
(a-z, A-Z)

Includes latin letters with accents when
using accent-insensitive collation

UPPER All characters that are simple latin upper-
case letters (A-Z)

Includes lowercase latters when using
case-insensitive collation

LOWER All characters that are simple latin lower-
case letters (a-z)

Includes uppercase latters when using
case-insensitive collation

DIGIT All characters that are numeric digits
(0-9)

SPACE All characters that are the space character
(ASCII 32)

WHITESPACE All characters that are whitespaces (ver-
tical tab (9), newline (10), horizontal tab
(11), carriage return (13), formfeed (12),
space (32))

ALNUM All characters that are simple latin letters
(ALPHA) or numeric digits (DIGIT)

Usage Guide

Return true for a string that matches <regular expression> or <regular term>:

 <regular expression> <vertical bar> <regular term>

 'ab' SIMILAR TO 'ab|cd|efg' -- true
 'efg' SIMILAR TO 'ab|cd|efg' -- true
 'a' SIMILAR TO 'ab|cd|efg' -- false

Match zero or more occurrences of <regular primary>: <regular primary> <asterisk>

 '' SIMILAR TO 'a*' -- true
 'a' SIMILAR TO 'a*' -- true
 'aaa' SIMILAR TO 'a*' -- true

Match one or more occurrences of <regular primary>: <regular primary> <plus sign>

 '' SIMILAR TO 'a+' -- false
 'a' SIMILAR TO 'a+' -- true
 'aaa' SIMILAR TO 'a+' -- true

Match zero or one occurrence of <regular primary>: <regular primary> <question mark>

Data Manipulation Language (DML)

45

 '' SIMILAR TO 'a?' -- true
 'a' SIMILAR TO 'a?' -- true
 'aaa' SIMILAR TO 'a?' -- false

Match exact <low value> occurrences of <regular primary>: <regular primary> <left brace> <low value> <right
brace>

 '' SIMILAR TO 'a{2}' -- false
 'a' SIMILAR TO 'a{2}' -- false
 'aa' SIMILAR TO 'a{2}' -- true
 'aaa' SIMILAR TO 'a{2}' -- false

Match <low value> or more occurrences of <regular primary>: <regular primary> <left brace> <low value>
<comma> <right brace>:

 '' SIMILAR TO 'a{2,}' -- false
 'a' SIMILAR TO 'a{2,}' -- false
 'aa' SIMILAR TO 'a{2,}' -- true
 'aaa' SIMILAR TO 'a{2,}' -- true

Match <low value> to <high value> occurrences of <regular primary> <regular primary> <left brace> <low
value> <comma> <high value> <right brace>:

 '' SIMILAR TO 'a{2,4}' -- false
 'a' SIMILAR TO 'a{2,4}' -- false
 'aa' SIMILAR TO 'a{2,4}' -- true
 'aaa' SIMILAR TO 'a{2,4}' -- true
 'aaaa' SIMILAR TO 'a{2,4}' -- true
 'aaaaa' SIMILAR TO 'a{2,4}' -- false

Match any (non-empty) character: <underscore>

 '' SIMILAR TO '_' -- false
 'a' SIMILAR TO '_' -- true
 '1' SIMILAR TO '_' -- true
 'a1' SIMILAR TO '_' -- false

Match a string of any length (including empty strings): <percent>

 '' SIMILAR TO '%' -- true
 'az' SIMILAR TO 'a%z' -- true
 'a123z' SIMILAR TO 'a%z' -- true
 'azx' SIMILAR TO 'a%z' -- false

Group a complete <regular expression> to use as one single <regular primary> as a sub-expression: <left paren>
<regular expression> <right paren>

 'ab' SIMILAR TO '(ab){2}' -- false

Data Manipulation Language (DML)

46

 'aabb' SIMILAR TO '(ab){2}' -- false
 'abab' SIMILAR TO '(ab){2}' -- true

Match a character identical to one of <character enumeration>: <left bracket> <character enumeration>... <right
bracket>

 'b' SIMILAR TO '[abc]' -- true
 'd' SIMILAR TO '[abc]' -- false
 '9' SIMILAR TO '[0-9]' -- true
 '9' SIMILAR TO '[0-8]' -- false

Match a character not identical to one of <character enumeration>: <left bracket> <circumflex> <character
enumeration>... <right bracket>

 'b' SIMILAR TO '[^abc]' -- false
 'd' SIMILAR TO '[^abc]' -- true

Match a character identical to one of <character enumeration include> but not identical to one of <character
enumeration exclude>: <left bracket> <character enumeration include>... <circumflex> <character enumeration
exclude>...

 '3' SIMILAR TO '[[:DIGIT:]^3]' -- false
 '4' SIMILAR TO '[[:DIGIT:]^3]' -- true

Match a character identical to one character included in <character class identifier>. Refer to the table of Char-
acter Class Identifiers, above. May be used with <circumflex> to invert the logic (see above): <left bracket>
<colon> <character class identifier> <colon> <right bracket>

 '4' SIMILAR TO '[[:DIGIT:]]' -- true
 'a' SIMILAR TO '[[:DIGIT:]]' -- false
 '4' SIMILAR TO '[^[:DIGIT:]]' -- false
 'a' SIMILAR TO '[^[:DIGIT:]]' -- true

Examples

create table department (
 number numeric(3) not null,
 name varchar(25) not null,
 phone varchar(14)
 check (phone similar to '\([0-9]{3}\) [0-9]{3}\-[0-9]{4}' escape '\')
);

insert into department
 values ('000', 'Corporate Headquarters', '(408) 555-1234');
insert into department
 values ('100', 'Sales and Marketing', '(415) 555-1234');
insert into department
 values ('140', 'Field Office: Canada', '(416) 677-1000');

insert into department
 values ('600', 'Engineering', '(408) 555-123'); -- check constraint violation

Data Manipulation Language (DML)

47

select * from department
 where phone not similar to '\([0-9]{3}\) 555\-%' escape '\';

Hex Literal Support

Bill Oliver
Adriano dos Santos Fernandes

Tracker reference CORE-1760.

Support for hexadecimal numeric and binary string literals has been introduced.

Syntax Patterns

<numeric hex literal> ::=
 { 0x | 0X } <hexit> [<hexit>...]

<binary string literal> ::=
 { x | X } <quote> [{ <hexit> <hexit> }...] <quote>

<digit> ::=
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hexit> ::=
 <digit> | A | B | C | D | E | F | a | b | c | d | e | f

Numeric Hex Literals

• The number of <hexit> in the string cannot exceed 16.

• If the number of <hexit> is greater than eight, the constant data type is a signed BIGINT. If it is eight or less,
the data type is a signed INTEGER.

Tip

That means 0xF0000000 is -268435456 and 0x0F0000000 is 4026531840.

Binary String Literals

The resulting string is defined as a CHAR(n/2) CHARACTER SET OCTETS, where n is the number of <hexit>.

Examples

select 0x10, cast('0x0F0000000' as bigint)
 from rdb$database;
select x'deadbeef'
 from rdb$database;

http://tracker.firebirdsql.org/browse/CORE-1760

Data Manipulation Language (DML)

48

New UUID Conversion Functions
Adriano dos Santos Fernandes

Tracker references CORE-1656 and CORE-1682.

Two new built-in functions, UUID_TO_CHAR and CHAR_TO_UUID, enable conversion between a UUID in
the form of a CHAR(16) OCTETS string and the RFC4122-compliant form.

CHAR_TO_UUID()

The function CHAR_TO_UUID() converts the CHAR(32) ASCII representation of a UUID (XXXXXXXX-
XXXX-XXXX-XXXX-XXXXXXXXXXXX) to the CHAR(16) OCTETS representation, optimized for stor-
age.

Syntax Model

CHAR_TO_UUID(<string>)

Example

select char_to_uuid('93519227-8D50-4E47-81AA-8F6678C096A1')
 from rdb$database;

UUID_TO_CHAR()

The function UUID_TO_CHAR() converts a CHAR(16) OCTETS UUID (as returned by the
GEN_UUID() function) to the CHAR(32) ASCII representation (XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX).

Syntax Model

UUID_TO_CHAR(<string>)

Example

select uuid_to_char(gen_uuid())
 from rdb$database;

SOME_COL = ? OR ? IS NULL Predication
Adriano dos Santos Fernandes

Tracker reference CORE-2298

By popular request, particularly from Delphi programmers, support has been implemented for a predication that
is able to “OR” test both the equivalence between a column and a parameter and whether the value passed to the

http://tracker.firebirdsql.org/browse/CORE-1656
http://tracker.firebirdsql.org/browse/CORE-1682
http://tracker.firebirdsql.org/browse/CORE-2298

Data Manipulation Language (DML)

49

parameter is NULL. This construct is often desired as a way to avoid the need to prepare one query to request
a filtered result set and another for the same query without the filter.

Users of Delphi and other programming interfaces that apply client-side object names to parameters wanted the
ability for the DSQL engine to recognise a usage like the following:

 WHERE col1 = :param1 OR :param1 IS NULL

At the API level, the language interface translates the query to

 WHERE col1 = ? OR ? IS NULL

That presented two problems:

1. While the programmer treated the parameter :param1 as though it were a single variable with two refer-
ences, the API could not: it is presented with two parameters

2. The second parameter is of an unknown data type and the program has no way to assign to it

What was needed to solve this problem was to introduce a new data type to handle the “? is NULL” condition
and teach Firebird to do the right thing when it received such a request.

The implementation works like this. To resolve the first problem, the request must supply two parameters (for
our Delphi example):

 WHERE col1 = :param1 OR :param2 IS NULL

• If “param1” is not NULL, the language interface is required to assign the correct value for the first parameter,
set the XSQLVAR.sqlind to NOT NULL and leave XSQLVAR.sqldata NULL.

• If “param2” is NULL, the language interface is required to set the XSQLVAR.sqlind of both parameters to
NULL and leave the XSQLVAR.sqldata NULL.

In other words, for the parameter (?) in ? IS NULL
:

• XSQLVAR.sqlind should be set in accordance with NULL/NON-NULL state of the parameter. This is the
type of parameter that is described by the new constant SQL_NULL.

• The XSQLVAR.sqldata of a SQL_NULL type of parameter should always be passed by the client application
as a NULL pointer and should never be accessed.

NULL Specified in the Output Set

When NULL is specified as an output constant (select NULL from ...), it continues to be described as CHAR(1),
rather than by SQL_NULL. That may change in a future version.

Extension to LIST() Function
Adriano dos Santos Fernandes

Tracker reference CORE-1453

http://tracker.firebirdsql.org/browse/CORE-1453

Data Manipulation Language (DML)

50

A string expression is now allowed as the delimiter argument of the LIST() function.

Example

SELECT
 DISCUSSION_ID,
 LIST(COMMMENT, ASCII_CHAR(13))
FROM COMMENTS
 GROUP BY DISCUSSION_ID;

Optimizer Improvements

Changes in optimizer logic that address recognised problems include:

CROSS JOIN Logic (D. Yemanov)
When a CROSS JOIN involved an empty table, the optimizer had no special logic to detect that the query
was futile and return the empty set immediately. That shortcut logic has now been implemented.

Tracker reference CORE-2200.

Note

The same change was implemented in V.2.1.2.

Derived Tables (A. dos Santos Fernandes)
The limit on the number of contexts available when using derived tables has been raised.

Tracker reference CORE-2029.

Timing of DEFAULT Evaluation (A. dos Santos Fernandes)
Under rare conditions, the early evaluation of a DEFAULT value or expression defined for a column might
give rise to a confused situation regarding the evaluation of an input value supplied for that column. The
possibility was addressed by deferring the evaluation of DEFAULT and not actually performing the evalu-
ation at all unless it was actually necessary.

Tracker reference CORE-1842.

Index Use for NOT IN Searches (A. dos Santos Fernandes)
Better performance has been achieved for the NOT IN predicate by enabling the use of an index.

Tracker reference CORE-1137.

Undo Log Memory Consumption (D. Yemanov)
Excessive memory consumption by the Undo log after a lengthy series of updates in a single transaction
has been avoided.

Tracker reference CORE-1477.

Other Improvements

Other changes to smooth out the little annoyances include:

http://tracker.firebirdsql.org/browse/CORE-2200
http://tracker.firebirdsql.org/browse/CORE-2029
http://tracker.firebirdsql.org/browse/CORE-1842
http://tracker.firebirdsql.org/browse/CORE-1137
http://tracker.firebirdsql.org/browse/CORE-1477

Data Manipulation Language (DML)

51

FREE_IT Error Detection (A. dos Santos Fernandes)
Previously, a UDF declared with FREE_IT would crash if the pointer returned had not been allocated by
the ib_util_malloc() function. Now, such a condition is detected, an exception is thrown and the pointer
remains in its allocated state.

Tracker reference CORE-1937.

“Expression evaluation not supported” message improved (C. Valderrama)
A number of secondary GDS codes were introduced to provide more details about an operation that fails
with an “Expression evaluation not supported” exception, for example:

 'Argument for @1 in dialect 1 must be string or numeric'
 'Strings cannot be added to or subtracted from DATE or TIME types'
 'Invalid data type for subtraction involving DATE, TIME or TIMESTAMP types'
 etc.

These detailed messages follow the GDS code for the isc_expression_eval_err (expression evaluation not
supported) error in the status vector.

Tracker reference CORE-1799.

http://tracker.firebirdsql.org/browse/CORE-1937
http://tracker.firebirdsql.org/browse/CORE-1799

52

Chapter 11

Procedural SQL (PSQL)
Several significant changes appear in Firebird's procedural language (PSQL), the language set for triggers, stored
procedures and dynamic executable blocks, especially with regard to new extensions to the capabilities of EX-
ECUTE STATEMENT. This release also heralds the arrival of the “autonomous transaction”.

Quick Links

• Autonomous Transactions
• Borrow Database Column Type for a PSQL Variable
• New Extensions to EXECUTE STATEMENT

- Context Issues
• Authentication
• Transaction Behaviour
• Inherited Access Privileges

- External Queries from PSQL
- EXECUTE STATEMENT with Dynamic Parameters
- Examples Using EXECUTE STATEMENT

Autonomous Transactions
Adriano dos Santos Fernandes

Tracker reference CORE-1409.

This new implementation allows a piece of code to run in an autonomous transaction within a PSQL module.
It can be handy for a situation where you need to raise an exception but do not want the database changes to
be rolled back.

The new transaction is initiated with the same isolation level as the one from which it is launched. Any exception
raised in a block within the autonomous transaction will cause changes to be rolled back. If the block runs
through until its end, the transaction is committed.

Warning

Because the autonomous transaction is independent from the one from which is launched, you need to use this
feature with caution to avoid deadlocks.

Syntax Pattern

IN AUTONOMOUS TRANSACTION
DO
 <simple statement | compound statement>

Example of Use

http://tracker.firebirdsql.org/browse/CORE-1409

Procedural SQL (PSQL)

53

create table log (
 logdate timestamp,
 msg varchar(60)
);

create exception e_conn 'Connection rejected';

set term !;

create trigger t_conn on connect
as
begin
 if (current_user = 'BAD_USER') then
 begin
 in autonomous transaction
 do
 begin
 insert into log (logdate, msg) values (current_timestamp, 'Connection rejected');
 end

 exception e_conn;
 end
end!

set term ;!

Borrow Database Column Type for a PSQL Variable
Adriano dos Santos Fernandes

Tracker reference CORE-1356.

This feature extends the implementation in v.2 whereby domains became available as “data types” for declaring
variables in PSQL. Now it is possible to borrow the data type of a column definition from a table or view for
this purpose.

Syntax Pattern

 data_type ::=
 <builtin_data_type>
 | <domain_name>
 | TYPE OF <domain_name>
 | TYPE OF COLUMN <table or view>.<column>

Note

TYPE OF COLUMN gets only the type of the column. Any constraints or default values defined for the column
are ignored.

Examples

CREATE TABLE PERSON (
 ID INTEGER,

http://tracker.firebirdsql.org/browse/CORE-1356

Procedural SQL (PSQL)

54

 NAME VARCHAR(40)
);

CREATE PROCEDURE SP_INS_PERSON (
 ID TYPE OF COLUMN PERSON.ID,
 NAME TYPE OF COLUMN PERSON.NAME
)
 AS
DECLARE VARIABLE NEW_ID TYPE OF COLUMN PERSON.ID;
BEGIN
 INSERT INTO PERSON (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING ID INTO :NEW_ID;
END

New Extensions to EXECUTE STATEMENT

Unusually for our release notes, we begin this chapter with the full, newly extended syntax for the EXECUTE
STATEMENT statement in PSQL and move on afterwards to explain the various new features and their usage.

[FOR] EXECUTE STATEMENT <query_text> [(<input_parameters>)]
 [ON EXTERNAL [DATA SOURCE] <connection_string>]
 [WITH {AUTONOMOUS | COMMON} TRANSACTION]
 [AS USER <user_name>]
 [PASSWORD <password>]
 [WITH CALLER PRIVILEGES]
 [INTO <variables>]

Note

The order of the optional clauses is not fixed so, for example, a statement based on the following model would
be just as valid:

 [ON EXTERNAL [DATA SOURCE] <connection_string>]
 [WITH {AUTONOMOUS | COMMON} TRANSACTION]
 [AS USER <user_name>]
 [PASSWORD <password>]
 [WITH CALLER PRIVILEGES]

Clauses cannot be duplicated.

Context Issues

If there is no ON EXTERNAL DATA SOURCE clause present, EXECUTE STATEMENT is normally executed
within the CURRENT_CONNECTION context. This will be the case if the AS USER clause is omitted, or it is
present with its <user_name> argument equal to CURRENT_USER.

However, if <user_name> is not equal to CURRENT_USER, then the statement is executed in a separate con-
nection, established without Y-Valve and remote layers, inside the same engine instance.

Procedural SQL (PSQL)

55

Note

In the absence of an AS USER <user_name> clause, CURRENT_USER is the default.

Authentication

Where server authentication is needed for a connection that is different to CURRENT_CONNECTION, e.g., for
executing an EXECUTE STATEMENT command on an external datasource, the AS USER and PASSWORD
clauses are required. However, under some conditions, the PASSWORD may be omitted and the effects will
be as follows:

1. On Windows, for the CURRENT_CONNECTION (i.e., no external data source), trusted authentication
will be performed if it is active and the AS USER parameter is missing, null or equal to CURRENT_USER.

2. If the external data source parameter is present and its <connection_string> refers to the same database as
the CURRENT_CONNECTION, the effective user account will be that of the CURRENT_USER.

3. If the external data source parameter is present and its <connection_string> refers to a different database
than the one CURRENT_CONNECTION is attached to, the effective user account will be the operating
system account under which the Firebird process is currently running.

In any other case where the PASSWORD clause is missing, only isc_dpb_user_name will be presented in the
DPB (attachment parameters) and native authentication will be attempted.

Transaction Behaviour

The new syntax has an optional clause for setting the appropriate transaction behaviour: WITH AU-
TONOMOUS TRANSACTION and WITH COMMON TRANSACTION. WITH COMMON TRANS-
ACTION is the default and does not need to be specified. Transaction lifetimes are bound to the
lifetime of CURRENT_TRANSACTION and are committed or rolled back in accordance with the
CURRENT_TRANSACTION.

The behaviour for WITH COMMON TRANSACTION is as follows:

a. Causes any transaction in an external data source to be started with the same parameters as
CURRENT_TRANSACTION; otherwise

b. Executes the statement inside the CURRENT_TRANSACTION; or

c. May use another transaction that is started internally in CURRENT_CONNECTION.

The WITH AUTONOMOUS TRANSACTION setting starts a new transaction with the same parameters as
CURRENT_TRANSACTION. That transaction will be committed if the statement is executed without excep-
tions or rolled back if the statement encounters an error.

Inherited Access Privileges
Vladyslav Khorsun

Tracker reference CORE-1928.

By design, the original implementation of EXECUTE STATEMENT isolated the executable code from the
access privileges of the calling stored procedure or trigger, falling back to the privileges available to the

http://tracker.firebirdsql.org/browse/CORE-1928

Procedural SQL (PSQL)

56

CURRENT_USER. In general, the strategy is wise, since it reduces the vulnerability inherent in providing for
the execution of arbitrary statements. However, in hardened environments, or where privacy is not an issue, it
could present a limitation.

The introduction of the optional clause WITH CALLER PRIVILEGES now makes it possible to have the ex-
ecutable statement inherit the access privileges of the calling stored procedure or trigger. The statement is pre-
pared using any additional privileges that apply to the calling stored procedure or trigger. The effect is the same
as if the statement were executed by the stored procedure or trigger directly.

Important

The WITH CALLER PRIVILEGES option is not compatible with the ON EXTERNAL DATA SOURCE
option.

External Queries from PSQL
Vladyslav Khorsun

Tracker reference CORE-1853.

EXECUTE STATEMENT now supports queries against external databases by inclusion of the ON EXTERNAL
DATA SOURCE clause with its <connection_string> argument.

The <connection_string> Argument

The format of <connection_string> is the usual one that is passed through the API function
isc_attach_database(), viz.

 [<host_name><protocol_delimiter>]database_path

Character Set

The connection to the external data source uses the same character set as is being used by the
CURRENT_CONNECTION context.

Access Privileges

If the external data source is on another server then the clauses AS USER <user_name> and PASSWORD
<password> will be needed.

The clause WITH CALLER PRIVILEGES is a no-op if the external data source is on another server.

MORE INFORMATION REQUIRED. ROLES?

Note

Use of a two-phase transaction for the external connection is not available in V.2.5.

http://tracker.firebirdsql.org/browse/CORE-1853

Procedural SQL (PSQL)

57

EXECUTE STATEMENT with Dynamic Parameters

Vladyslav Khorsun
Alex Peshkov

Tracker reference CORE-1221.

The new extensions provide the ability to prepare a statement with dynamic input parameters (placeholders)
in a manner similar to a parameterised DSQL statement. The actual text of the query itself can also be passed
as a parameter.

Syntax Conventions

The mechanism employs some conventions to facilitate the run-time parsing and to allow the option of “naming”
parameters in a style comparable with the way some popular client wrapper layers, such as Delphi, handle DSQL
parameters. The API's own convention, of passing unnamed parameters in a predefined order, is also supported.
However, named and unnamed parameters cannot be mixed.

The New Binding Operator

At this point in the implementation of the dynamic parameter feature, to avoid clashes with equivalence tests,
it was necessary to introduce a new assignment operator for binding run-time values to named parameters. The
new operator mimics the Pascal assignment operator:“:=”.

Syntax for Defining Parameters

 <input_parameters> ::=
 <named_parameter> | <input_parameters>, <named_parameter>

 <named_parameter> ::=
 <parameter name> := <expression>

Example for named input parameters

For example, the following block of PSQL defines both <query_text> and named <input_parameters>
(<named_parameter>):

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
 BEGIN
 /* Normal PSQL string assignment of <query_text> */
 S = 'INSERT INTO TTT VALUES (:a, :b, :a)';

 WHILE (N > 0) DO
 BEGIN
 /* Each loop execution applies both the string value
 and the values to be bound to the input parameters */

http://tracker.firebirdsql.org/browse/CORE-1221

Procedural SQL (PSQL)

58

 EXECUTE STATEMENT (:S) (a := CURRENT_TRANSACTION, b := CURRENT_CONNECTION)
 WITH COMMON TRANSACTION;
 N = N - 1;
 END
 END

Example for unnamed input parameters

A similar block using a set of unnamed input parameters instead and passing constant arguments directly:

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
 BEGIN
 S = 'INSERT INTO TTT VALUES (?, ?, ?)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S) (CURRENT_TRANSACTION, CURRENT_CONNECTION, CURRENT_TRANSACTION);
 N = N - 1;
 END
 END

Note

Observe that, if you use both <query_text> and <input_parameters> then the <query_text> must be enclosed
in parentheses, viz.

 EXECUTE STATEMENT (:sql) (p1 := 'abc', p2 := :second_param) ...

Examples Using EXECUTE STATEMENT

The following examples offer a sampler of ways that the EXECUTE STATEMENT extensions might be applied
in your applications.

Test Connections and Transactions

A couple of tests you can try to compare variations in settings:

Test a) :Execute this block few times in the same transaction - it will create three new connections to the current
database and reuse it in every call. Transactions are also reused.

EXECUTE BLOCK
 RETURNS (CONN INT, TRAN INT, DB VARCHAR(255))
AS
 DECLARE I INT = 0;
 DECLARE N INT = 3;
 DECLARE S VARCHAR(255);
BEGIN
 SELECT A.MON$ATTACHMENT_NAME FROM MON$ATTACHMENTS A

Procedural SQL (PSQL)

59

 WHERE A.MON$ATTACHMENT_ID = CURRENT_CONNECTION
 INTO :S;

 WHILE (i < N) DO
 BEGIN
 DB = TRIM(CASE i - 3 * (I / 3)
 WHEN 0 THEN '\\.\' WHEN 1 THEN 'localhost:' ELSE '' END) || :S;

 FOR EXECUTE STATEMENT
 'SELECT CURRENT_CONNECTION, CURRENT_TRANSACTION
 FROM RDB$DATABASE'
 ON EXTERNAL :DB
 AS USER CURRENT_USER PASSWORD 'masterkey' -- just for example
 WITH COMMON TRANSACTION
 INTO :CONN, :TRAN
 DO SUSPEND;

 i = i + 1;
 END
END

Test b) : Execute this block few times in the same transaction - it will create three new connections to the current
database on every call.

EXECUTE BLOCK
 RETURNS (CONN INT, TRAN INT, DB VARCHAR(255))
AS
 DECLARE I INT = 0;
 DECLARE N INT = 3;
 DECLARE S VARCHAR(255);
BEGIN
 SELECT A.MON$ATTACHMENT_NAME
 FROM MON$ATTACHMENTS A
 WHERE A.MON$ATTACHMENT_ID = CURRENT_CONNECTION
 INTO :S;

 WHILE (i < N) DO
 BEGIN
 DB = TRIM(CASE i - 3 * (I / 3)
 WHEN 0 THEN '\\.\'
 WHEN 1 THEN 'localhost:'
 ELSE '' END) || :S;

 FOR EXECUTE STATEMENT
 'SELECT CURRENT_CONNECTION, CURRENT_TRANSACTION FROM RDB$DATABASE'
 ON EXTERNAL :DB
 WITH AUTONOMOUS TRANSACTION -- note autonomous transaction
 INTO :CONN, :TRAN
 DO SUSPEND;

 i = i + 1;
 END
END

Input Evaluation Demo

Demonstrating that input expressions evaluated only once:

Procedural SQL (PSQL)

60

EXECUTE BLOCK
 RETURNS (A INT, B INT, C INT)
AS
BEGIN
 EXECUTE STATEMENT (
 'SELECT CAST(:X AS INT),
 CAST(:X AS INT),
 CAST(:X AS INT)
 FROM RDB$DATABASE')
 (x := GEN_ID(G, 1))
 INTO :A, :B, :C;

 SUSPEND;
END

Insert Speed Test

Recycling our earlier examples for input parameter usage for comparison with the non-parameterised form of
EXECUTE STATEMENT:

RECREATE TABLE TTT (
 TRAN INT,
 CONN INT,
 ID INT);

-- Direct inserts:

EXECUTE BLOCK AS
 DECLARE N INT = 100000;
BEGIN
 WHILE (N > 0) DO
 BEGIN
 INSERT INTO TTT VALUES (CURRENT_TRANSACTION, CURRENT_CONNECTION, CURRENT_TRANSACTION);
 N = N - 1;
 END
END

-- Inserts via prepared dynamic statement
-- using named input parameters:

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
BEGIN
 S = 'INSERT INTO TTT VALUES (:a, :b, :a)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S)
 (a := CURRENT_TRANSACTION, b := CURRENT_CONNECTION)
 WITH COMMON TRANSACTION;
 N = N - 1;
 END
END

-- Inserts via prepared dynamic statement
-- using unnamed input parameters:

Procedural SQL (PSQL)

61

EXECUTE BLOCK AS
DECLARE S VARCHAR(255);
DECLARE N INT = 100000;
BEGIN
 S = 'INSERT INTO TTT VALUES (?, ?, ?)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S) (CURRENT_TRANSACTION, CURRENT_CONNECTION, CURRENT_TRANSACTION);
 N = N - 1;
 END
END

62

Chapter 12

International Language
Support (INTL)

Adriano dos Santos Fernandes

Some improvements appear in this release to tighten and enhance Firebird's handling capabilities for interna-
tional language environment.

Default COLLATION Attribute for a Database

Databases of ODS 11.2 and higher can now optionally be created with a default collation associated with the
default character set. For details, please see Default COLLATION Attribute for a Database in the DDL chapter.

ALTER CHARACTER SET Command

DDL syntax has been introduced to enable the default collation for a character set to be set at database level.
For details, please see ALTER CHARACTER SET Command in the DDL chapter.

Connection Strings & Character Sets

Capability has been implemented in the API database connection (DPB) area to interoperate with the character
set and/or code page of server and client, to avoid the previous problems that could occur when file names
contained non-ASCII characters.

Refer to the topic Connection Strings & Character Sets in the chapter Changes to the Firebird API and ODS.
Even if you are not normally interested in the API, this topic will be a worthwhile read if you have been bothered
with such issues.

Other Improvements

Malformed UNICODE_FSS Characters Disallowed

Tracker reference CORE-1600.

Malformed characters are no longer allowed in data for UNICODE_FSS columns.

http://tracker.firebirdsql.org/browse/CORE-1600

International Language Support (INTL)

63

Repair Switches for Malformed Strings

New restore switches were added to the gbak utility code for the purpose of repairing malformed
UNICODE_FSS data and metadata by restoring a backup of the affected database. Details are in the gbak section
of the Utilities chapter.

Numeric Sort Attributes

Tracker reference: CORE-1945)

For UNICODE collations only, a custom attribute NUMERIC-SORT has been enabled for specifying the order
by which to sort numerals.

Format & Usage

 NUMERIC-SORT={0 | 1}

The default, 0, sorts numerals in alphabetical order. For example:

 1
 10
 100
 2
 20

1 sorts numerals in numerical order. For example:

 1
 2
 10
 20
 100

Example

create collation unicode_num for utf8
from unicode 'NUMERIC-SORT=1';

Character Sets and Collations

UNICODE_CI_AI

Tracker reference CORE-824.

http://tracker.firebirdsql.org/browse/CORE-1945
http://tracker.firebirdsql.org/browse/CORE-824

International Language Support (INTL)

64

UNICODE_CI_AI: case-insensitive, accent-insensitive collation added for UNICODE.

WIN_1258

Tracker reference CORE-2185.

Added alias WIN_1258 for WIN1258 character set, for consistency with other WIN* character sets.

SJIS and EUCJ Character Sets

Tracker reference CORE-2103.

Strings in SJIS and EUCJ character sets are now verified for well-formedness.

http://tracker.firebirdsql.org/browse/CORE-2185
http://tracker.firebirdsql.org/browse/CORE-2103

65

Chapter 13

Command-line Utilities

Retrieve Password from a File or Prompt
Alex Peshkov

Any command-line utility that takes a -password parameter is vulnerable to password sniffing, especially when
the utility is run from a script. Since v.2.1, the [PASSWORD] argument has displayed in the process list on
POSIX platforms as an asterisk (*), which was an improvement on showing it in clear.

As a second stage towards hiding the password from unauthorised eyes, this release enables it to be retrieved
from a file or (on POSIX) from STDIN.

New -fetch_password Switch

Firebird 2.5 introduces the new switch -fet[ch_password] as an optional replacement for -pa[ssword] for all
command-line utilities that take a password for authentication purposes. The switch may be progressively ab-
breviated from the right, conforming to the established rules.

PLEASE NOTE

1. The exception to the rules is the qli utility, for which only -F is valid.

2. The new switch cannot be applied to substitute for the -pw switch of the gsec utility.

Usage of -fetch_password

The switch requires one parameter, an unquoted string that is the file path for the file containing the password.
If the call is not made by a system user with Superuser/Administrator privileges, the location must be accessible
by the system user making the call.

For example,

 isql -user sysdba -fet passfile server:employee

extracts the first line of from a file named “passfile” in the current working directory and loads it into the
[PASSWORD] argument of the call.

The filename can be specified as stdin:

 isql -user sysdba -fet stdin server:employee

Command-line Utilities

66

If stdin is the terminal, a prompt is presented—

 Enter password:

—requiring the operator to type in the password.

Tip

On POSIX, the operator will also be prompted if s/he specifies

 -fetch /dev/tty

This technique could be useful if, for example, you needed to restore from stdin (all one line):

 bunzip2 -c emp.fbk.bz2 | gbak -c stdin /db/new.fdb
 -user sysdba -fetch /dev/tty

gsec and fbsvcmgr

Since v.2.1, domain administrators have had full access to the user management functions. This version adds
the ALTER ROLE operator to enable SYSDBA-privileged access to user databases by the appointed OS ad-
mininstrator, by way of the RDB$ADMIN role.

However, it was still not possible for such a user to attach directly to the security database, except by way of an
embedded connection, which resulted in a functional incompatibility with v.2.1.

New -mapping Switch for gsec

The new -mapping switch is used to enable or disable the OS user's association with the RDB$ADMIN role
in the security database. Its format is:

 mapping {set|drop}

Mapping Tags for fbsvcmgr

The corresponding new tag items for the Service Parameter Block are isc_action_svc_set_mapping and
isc_action_svc_drop_mapping. The appropriate support for these tag items has been added to the fbsvcmgr
utility.

Command-line Utilities

67

gbak

Repair Switches for Malformed Strings
Adriano dos Santos Fernandes

Tracker reference CORE-1831.

The gbak utility has two new restore switches intended to repair malformed UNICODE_FSS character data and
metadata, respectively, when restoring the backup of an affected database.

Switch Syntax

 -FIX_FSS_D(ATA) <charset> -- fix malformed UNICODE_FSS data
 -FIX_FSS_M(ETADATA) <charset> -- fix malformed UNICODE_FSS metadata

Preserve Character Set Default Collation
Adriano dos Santos Fernandes

An improvement allows the current value of RDB$DEFAULT_COLLATE_NAME in the system table RDB
$CHARACTER_SETS to survive the backup/restore cycle.

Tracker reference CORE-789.

nBackup

An improvement has been done for POSIX versions to address a problem whereby the full backup tool of
the nBackup incremental backup utility would hog I/O resources when backing up large databases, bringing
production work to a standstill. Now, nBackup tries to read from the operating system cache before attempting
to read from disk, thus reducing the I/O load substantially.

Note

The “cost” may be a 10 to 15 percent increase in the time taken to complete the full backup under high-load
conditions.

Tracker reference CORE-2316.

http://tracker.firebirdsql.org/browse/CORE-1831
http://tracker.firebirdsql.org/browse/CORE-789
http://tracker.firebirdsql.org/browse/CORE-2316

Command-line Utilities

68

isql

SQLSTATE instead of SQLCODE
Claudio Valderrama

isql now returns the SQLSTATE completion code in diagnostics, instead of the now deprecated SQLCODE.
For more information, see the topic Support for SQLSTATE Completion Codes in the chapter Changes to the
Firebird API and ODS.

gpre (Precompiler)

Some Updates

Stephen Boyd
Adriano dos Santos Fernandes

Tracker reference CORE-1527.

GPRE now supports the IS NOT DISTINCT predicate and CASE/NULLIF/COALESCE/SUBSTRING func-
tions, as well as the whole set of CURRENT_* context variables.

Deprecated Features with Future Impact on Utilities

In anticipation of the dropping of the intrinsic function isc_ddl from the Firebird 3 codebase, certain features
currently available in the gdef and gpre tools are deprecated—meaning that, whilst they may work in V.2.5,
they will fail in Firebird 3. More details can be found in the Compatibility chapter.

http://tracker.firebirdsql.org/browse/CORE-1527

69

Chapter 14

Installation Notes
Installation And Migration Guide

The latest version of Installation and Migration Guide for Firebird versions 2.0.x and 2.1.x is still applicable
to the v.2.5 series. If a copy of this document is not present in your /doc/ directory, you can download it from
the Firebird website.

Some improvements have been done to solve issues that could arise with the binary installation packages.

Linux (POSIX)
Alex Peshkov

(CORE-2195): the Linux Classic installation scripts were reviewed to improve the assignment of ownership and
access rights to documentation and other components.

(CORE-2392): Cleanups of installation scripts for all active POSIX ports for Superserver and Superclassic were
done to address a problem with the Guardian on these platforms.

Windows
Vlad Khorsun

Tracker entry: CORE-2243

Note

Because the changes took effect from V.2.1.2, this discussion also appears as a special topic in the V.2 Instal-
lation and Migration document.

Managing MSCV8 Assemblies

Firebird 2.5 is built by the Microsoft MSVC8 compiler in Visual Studio 2005. Because all the Firebird binaries
are built to use dynamic linking, they all require run-time libraries.

To avoid the dll-hell issue Microsoft introduced new rules for the distribution of components that may be shared
by multiple applications. From Windows XP forward, shared libraries—such as the Visual C++ and Visual C
runtimes msvcp80.dll, msvcr80.dll and mscvcm80.dll—must be distributed as shared or as private
assemblies.

• The Microsoft MSI Installer installs shared assemblies into the common special folder SxS for use by multiple
applications.

• Private assemblies are distributed with applications and should be put into the application folder. Use of the
\system32 folder for assemblies is now prohibited on the XP, Server2003 and Vista platform families.

http://tracker.firebirdsql.org/browse/CORE-2195
http://tracker.firebirdsql.org/browse/CORE-2392
http://tracker.firebirdsql.org/browse/CORE-2243

Installation Notes

70

Installing Runtimes as a Shared Assembly

To install the runtimes as a shared assembly, the deployment system must have MSI 3.0 installed and the user
must have administrative privileges. Often, this is not possible with an application being deployed with Firebird
Embedded: it must be installed ready-to-run. In that case, do not plan to install the runtimes as a shared assembly.

Installing Runtimes as a Private Assembly

To install the MSVC8 run-time libraries as a private assembly its contents—the three DLLs mentioned above
and the assembly's manifest file, Microsoft VC80.CRT.manifest—must be put into every folder where a
dependent binary (.exe or .dll) resides, because of built-in checks for the folders that are the expected location
of the runtimes that are equivalent to the compile-time libraries that were used.

A typical installation of Firebird Embedded would thus require three complete copies of the MSVC8 run-time
assembly: one in the application folder and one each into the \intl and \udf folders. To avoid the issue of bloating
the installation, some changes were done for V.2.1.2 in the way some of the Firebird binaries are built. (See
also Tracker entry CORE-2243).

These are the changes that enable Firebird Embedded to work even if the application structure does not incor-
porate the MSVC8 runtime assembly:

a. The libraries ib_util.dll, fbudf.dll, ib_udf.dll, fbintl.dll are built without any embedded manifest. The effect
is to avoid having the loader search for a MSVC8 assembly in the same folder as corresponding DLL.
For this to work, the host process must have already loaded the MSVC8 run-time via manifest before any
attempt is made to load these secondary DLL's.

b. fbembed.dll now has code to create and activate the activation context from its own manifest before loading
any secondary DLL that might be required.

Notes

a. It is highly recommended to use the Microsoft redistribution package to install the MSVC8 run-time! The
executable installer vcredist_x86.exe or vcredist_x64.exe (as appropriate to your kit selection)
should be present in the zip kits for the full installation and the Embedded version. If not, it can be down-
loaded from the Microsoft download site.

b. Third party UDFs must satisfy one of the following requirements if a MSVC8 run-time assembly is in-
stalled as private assembly. When compiling the UDF library, the MSVC8 runtime EITHER:

• is NOT used

• is used but the build is done without the embedded manifest

• is used and the build is done with the embedded manifest—the default option in the MSVC IDE. In
this case the MSVC8 assembly must be in the same folder as the UDF library

http://tracker.firebirdsql.org/browse/CORE-2243
http://www.microsoft.com/downloads/Browse.aspx?displaylang=en&productID=23947D52-B2BC-4E88-8C51-E81DC2905B0D

71

Chapter 15

Compatibility Issues
Dmitry Yemanov

For migrating v.2.0.x or v.2.1.x databases to Firebird 2.5, a number of incompatibilities that are likely to affect
existing databases or existing applications should be noted. It is not recommended that you begin a migration
until you have resolved these.

Effects of Unicode Metadata

If you have not previously updated text objects within the metadata of your databases to be in character set
UTF8, restoring a database until V.2.5 will fail with “malformed string” errors. To resolve this it is necessary to
pay attention to the files in the /misc/upgrade/metadata directory of your installation and to use the new
-fix_fss_data and -fix_fss_metadata switches in the gbak command line.

Configuration Parameters Removed

The deprecated configuration parameters OldParameterOrdering and CreateInternalWindow are no
longer supported and have been removed from firebird.conf.

Two parameters that allowed tuning of the Lock Manager in previous versions are not required with the new
Lock Manager implementation and have been removed. They are LockSemCount and LockSignal.

SQL Language Changes

It will be necessary to pay attention to some changes in the SQL language implementation.

Reserved Words

Some new reserved keywords are introduced. The full list is available in the chapter New Reserved Words and
Changes. Any identifiers using those words in DSQL statements or PSQL code will need to be changed, either
by renaming the identifiers concerned or, for dialect 3 databases, by double-quoting them.

Execution Results

Some changes will now cause exceptions during run-time execution of queries, including those that are run
during the execution of the gbak utility code (backups and restores).

Compatibility Issues

72

Malformed String Errors

Well-formedness checks are now performed on UNICODE_FSS strings and text blobs. If new or existing
UNICODE_FSS is malformed, it will now cause exceptions at execution time.

Logic Change in SET Clause

Previously, when the SET clause of the UPDATE statement assigned new values to columns, the new value
replaced the old value immediately. If the same column was assigned or assigned to more than once, the current
value would be that of the assignment most recently done. In other words, previously, assignment order mattered.

To bring Firebird in line with the standard, from this version forward, only the original value of a column is
accessible to any assignment in the SET clause.

For a period, it is possible to revert to the legacy behavior by setting the temporary parameter OldSetClauseSe-
mantics in firebird.conf. This parameter will be deprecated and removed in future releases.

Utilities

Be on the watch for the effects of the following changes to the Firebird command-line utilities.

fb_lock_print

Because v.2.5 maintains separate lock structures for each database on the server, fb_lock_print now requires a
database path name in order to print the lock table. Include the new switch -d <path name> in the command
line to specify the filesystem path to the database you wish to analyse.

Deprecated Features with Future Impact

In anticipation of the dropping of the intrinsic function isc_ddl from the Firebird 3 codebase, certain features
currently available in the gdef and gpre tools are deprecated—meaning that, whilst they may work in V.2.5,
they will fail in Firebird 3.

• gdef will no longer be supported at all. Instead, isql should be used, with regular DDL commands.

• For gpre pre-processing, replace all DDL operations with

 EXEC SQL
 EXECUTE IMMEDIATE "..."

• In all custom applications, calls to isc_ddl must be replaced with SQL DDL statement requests.

API Changes

Notice the following changes to the application programming interface (API) that is implemented in the client
libraries.

Compatibility Issues

73

Rejection of Inconsistent TPB Options

The API functions isc_start_transaction() and isc_start_multiple() will now reject combinations of transaction
parameter buffer (TPB) items that do not “belong together”.

For example, a non-zero wait timeout is inconsistent with the no wait option; and no record version is inconsis-
tent with any transaction isolation mode other than ReadCommitted. Now, instead of making some arbitrary
(and possibly incorrect) assumption about the inherent ambiguities, the engine will reject such combinations
as invalid.

For more information, see the topic Transaction Diagnostics in the chapter Changes in the Firebird Engine.

Addition of SQL_NULL Constant

New SQL_NULL constant was introduced to enable the predication OR ? IS NULL to be recognised and
processed with the expected outcome and without engendering the “Data type unknown” exception. This affects
how the XSQLVAR structures are populated for such queries. For information, refer to the topic SOME_COL
= ? OR ? IS NULL Predication in the DML chapter.

Security Hardening

The following changes should be noted.

No SYSDBA Auto-mapping (Windows)

In V.2.1, members of administrative Windows groups were mapped to SYSDBA by default. From V.2.5 forward,
SYSDBA mapping is controlled on per-database basis using the new SQL command

ALTER ROLE RDB$ADMIN SET/DROP AUTO ADMIN MAPPING

For more details, refer to the chapter on Security.

Default Authentication Method (Windows)

In V.2.1, where support for Windows trusted authentication was introduced, the default authentication method
applied was mixed, i.e., the DPB or SPB would accept either native Firebird logins or trusted user logins. Thus,
he Authentication parameter in firebird.conf showed mixed as the default.

From V.2.5 forward, the default is native. To have mixed or trusted, it is now necessary to configure this pa-
rameter specifically.

Tracker reference CORE-2376)

http://tracker.firebirdsql.org/browse/CORE-2376

74

Chapter 16

Bugs Fixed

Firebird 2.5 Beta 1

The following bugs were reported as fixed in the Beta 1 release:

Core Engine/DSQL

(CORE-2389) Wrong matching of SIMILAR TO expression with brackets.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2356) On Windows the listener process of Classic Server was unable to create the necessary
resources after restart if any worker process was present.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2355) Incorrect handling of LOWER/UPPER when result string shrinks in terms of byte length.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2351) It was not possible to create a database whose <file specification> was an alias, even though
the alias existed.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2349) The “Invalid SQLDA” error was being falsely thrown.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2348) More database corruption problems showed up resulting from transaction numbers over-
flowing 32-bit signed integer.

fixed by V. Khorsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2389
http://tracker.firebirdsql.org/browse/CORE-2356
http://tracker.firebirdsql.org/browse/CORE-2355
http://tracker.firebirdsql.org/browse/CORE-2351
http://tracker.firebirdsql.org/browse/CORE-2349
http://tracker.firebirdsql.org/browse/CORE-2348

Bugs Fixed

75

(CORE-2347) “Deadlock. Page type <N> lock conversion denied” errors were reported under a concurrent
“connect-work-disconnect” style of load.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2341) Hidden variables could conflict with output parameters, causing assertions, unexpected
errors or even incorrect results.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2340) Bugcheck 258 (page slot not empty) could occur under high concurrent load.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2339) Incorrect results were being returned for derived expressions based on aggregation and
computation.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2265) Grouping by function was not working properly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2320) A complex recursive query did not always return all rows.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2317) select * from (select cast(.... was returning null.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2313) INF_* functions could invalidate the whole output buffer with isc_info_truncated at the
beginning, due to a boundary condition.

fixed by C. Valderrama

 ~ ~ ~

(CORE-2311) A WITH RECURSIVE query could cause memory leakage.

fixed by V. Khorsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2347
http://tracker.firebirdsql.org/browse/CORE-2341
http://tracker.firebirdsql.org/browse/CORE-2340
http://tracker.firebirdsql.org/browse/CORE-2339
http://tracker.firebirdsql.org/browse/CORE-2265
http://tracker.firebirdsql.org/browse/CORE-2320
http://tracker.firebirdsql.org/browse/CORE-2317
http://tracker.firebirdsql.org/browse/CORE-2313
http://tracker.firebirdsql.org/browse/CORE-2311

Bugs Fixed

76

(CORE-2308) SIMILAR TO was producing random results with [x-y] expressions.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2300) The second evaluation of SUBSTRING() would throw an unexpected arithmetic exception,
numeric overflow, or string truncation error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2293) The wrong dependent object type (RELATION) was being stored in RDB$DEPENDENCIES
for views.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2289) The wrong name was being reported for the referenced primary key when a foreign key
violation occurred during foreign key creation.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2264) Doing ALTER DOMAIN on a domain with dependencies could leave a transaction handle
in an inconsistent state and cause segmentation faults.

fixed by A. dos Santos Fernandes, D. Yemanov

 ~ ~ ~

(CORE-2258) Selecting UPPER (<blob>) from a UNION was causing an internal error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2257) The error Bugcheck 167 (invalid send request) could occur while altering dependent
procedures.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2255) The error String right truncation could occur while altering a view with a join.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2242) The engine was incorrectly populating integer containers in the blob parameter buffer (BPB)
with integers in machine-local format, causing errors on Big Endian platforms.

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-2308
http://tracker.firebirdsql.org/browse/CORE-2300
http://tracker.firebirdsql.org/browse/CORE-2293
http://tracker.firebirdsql.org/browse/CORE-2289
http://tracker.firebirdsql.org/browse/CORE-2264
http://tracker.firebirdsql.org/browse/CORE-2258
http://tracker.firebirdsql.org/browse/CORE-2257
http://tracker.firebirdsql.org/browse/CORE-2255
http://tracker.firebirdsql.org/browse/CORE-2242

Bugs Fixed

77

 ~ ~ ~

(CORE-2241) If an ALTER TABLE ALTER COLUMN.. operation was performed on a table in the course
of a bulk insert operation, minor index corruption could occur causing subsequent queries to return the wrong
number of records. The bug was traced to legacy code in BTR\compress_root().

fixed by V. Khorsun

 ~ ~ ~

(CORE-2237) An unresolved assertion was exhibited at src\jrd\intl.cpp, line 569.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2231) A Bugcheck 179 (decompression overran buffer) was thrown when the v.2.5 server attempted
to read from the table RDB$TRIGGER_MESSAGES in a ODS 10.x database.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2230) Input parameters for EXECUTE BLOCK were not being domain-checked.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2202) RDB$VIEW_RELATIONS was not being cleaned up when ALTER VIEW was processed.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2186) In the Windows embedded server, fbintl.dll was not being unloaded after the
isc_dsql_execute_immediate() during the processing for CREATE DATABASE.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2183) An error was being thrown when a server shutdown was started while an “execute statement”
request was open.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2182) It was not possible to drop an existing UDF whose name was duplicated by the name of
a new built-in function.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2179) Deadlocks were exhibited when trying to shut down the server whilst an “execute statement”
request was open.

http://tracker.firebirdsql.org/browse/CORE-2241
http://tracker.firebirdsql.org/browse/CORE-2237
http://tracker.firebirdsql.org/browse/CORE-2231
http://tracker.firebirdsql.org/browse/CORE-2230
http://tracker.firebirdsql.org/browse/CORE-2202
http://tracker.firebirdsql.org/browse/CORE-2186
http://tracker.firebirdsql.org/browse/CORE-2183
http://tracker.firebirdsql.org/browse/CORE-2182
http://tracker.firebirdsql.org/browse/CORE-2179

Bugs Fixed

78

fixed by A. Peshkov

 ~ ~ ~

(CORE-2176) COALESCE and GROUP BY were returning unexpected wrong results.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2174) The DATEADD() and DATEDIFF() functions were causing an assert in
TimeStamp::decode().

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2154) A “request synchronization error” would occur when calling isc_dsql_sql_info() with the
isc_info_sql_records parameter after the last record had been fetched with EXECUTE PROCEDURE.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2153) The “|” option was causing the SIMILAR TO predicate to hang.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2140) Error messages after substitution of parameters contained '\n' characters instead of the
actual line break.

fixed by C. Valderrama

 ~ ~ ~

(CORE-2138) If a stored procedure with an EXECUTE STATEMENT against an external database failed
at runtime, the external database would remain attached.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2132) Indexed retrieval could not be chosen if a stored procedure call was used in the comparison
predicate.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2117) Incorrect ROW_COUNT values were being returned with indexed retrieval and subqueries.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2115) For some long queries the query plan could go missing.

http://tracker.firebirdsql.org/browse/CORE-2176
http://tracker.firebirdsql.org/browse/CORE-2174
http://tracker.firebirdsql.org/browse/CORE-2154
http://tracker.firebirdsql.org/browse/CORE-2153
http://tracker.firebirdsql.org/browse/CORE-2140
http://tracker.firebirdsql.org/browse/CORE-2138
http://tracker.firebirdsql.org/browse/CORE-2132
http://tracker.firebirdsql.org/browse/CORE-2117
http://tracker.firebirdsql.org/browse/CORE-2115

Bugs Fixed

79

fixed by D. Yemanov

 ~ ~ ~

(CORE-2101) A Bugcheck 249 (pointer page vanished) error would be thrown when an attempt was made
to fetch beyond the end-of-stream mark of an open PSQL cursor.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2098) It was not possible to create a view that selected from a global temporary table.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2081) RDB$DB_KEY in a subquery expression would incorrectly return NULL.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2078) If selective non-indexed predicates were involved in a join, the join plan was not optimized
as well as it could be.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2075) Parts of the RDB$DB_KEY of views could be inverted when using outer joins.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2073) Expression indices bug: incorrect result for the inverted boolean.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2069) Incorrect view expansion when RDB$DB_KEY was used inside a view body.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2068) Comparision would return a wrong result with the IN <subquery_expression> operand if
the <subquery_expression> argument involved the RDB$DB_KEY.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2067) ?? GROUP BY and RDB$DB_KEY problems ??

fixed by A. dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-2101
http://tracker.firebirdsql.org/browse/CORE-2098
http://tracker.firebirdsql.org/browse/CORE-2081
http://tracker.firebirdsql.org/browse/CORE-2078
http://tracker.firebirdsql.org/browse/CORE-2075
http://tracker.firebirdsql.org/browse/CORE-2073
http://tracker.firebirdsql.org/browse/CORE-2069
http://tracker.firebirdsql.org/browse/CORE-2068
http://tracker.firebirdsql.org/browse/CORE-2067

Bugs Fixed

80

 ~ ~ ~

(CORE-2066) ?? Conversion of SQL_TEXT / SQL_VARCHAR to SQL_TIMESTAMP / SQL_TIME /
SQL_DATE ??

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2062) Classic server exhibited a lock file remapping error.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2053) Computed expressions could suffer from poor optimization if used inside the RETURNING
clause of the INSERT statement.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2045) A v.2.1 regression was picked up, whereby references to non-existent system fields with
blr_field were not being resolved to NULL, whereas a parallel change involving blr_fld was exhibiting
the proper corrective behaviour.

fixed by dos Santos Fernandes

 ~ ~ ~

(CORE-2044) ?? Incorrect result for UPDATE OR INSERT ... RETURNING OLD and non-nullable
columns ???

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2041) UPDATE OR INSERT with GEN_ID() was causing the generator to step by 3.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2039) Domain-level CHECK constraints were processing NULL values wrongly.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2038) The new EXECUTE STATEMENT implementation would assert or throw an error if used
both before and after Commit Retaining or Rollback Retaining.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2036) The order of parameters in an EXECUTE BLOCK statement was being reversed if the
block was called from EXECUTE STATEMENT.

http://tracker.firebirdsql.org/browse/CORE-2066
http://tracker.firebirdsql.org/browse/CORE-2062
http://tracker.firebirdsql.org/browse/CORE-2053
http://tracker.firebirdsql.org/browse/CORE-2045
http://tracker.firebirdsql.org/browse/CORE-2044
http://tracker.firebirdsql.org/browse/CORE-2041
http://tracker.firebirdsql.org/browse/CORE-2039
http://tracker.firebirdsql.org/browse/CORE-2038
http://tracker.firebirdsql.org/browse/CORE-2036

Bugs Fixed

81

fixed by V. Khorsun

 ~ ~ ~

(CORE-2031) ??? NULL in the first record in a condition on RDB$DB_KEY ???

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2027) The buffer size for ORDER BY expressions involving system fields was being calculated
wrongly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2026) ??? Problem with a read-only marked database ???

fixed by V. Khorsun

 ~ ~ ~

(CORE-2022) CREATE USER was not being supported by the EXECUTE BLOCK statement.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2008) ??? NOT NULL flag for procedure parameters in the system schema ???

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2002) A conversion error from a UDF result would leave a memory leak if the result was marked
with FREE_IT.

fixed by C. Valderrama

 ~ ~ ~

(CORE-2001) When trying to show a conversion error, the message arithmetic exception or string truncation
was sometimes appearing instead.

fixed by C. Valderrama

 ~ ~ ~

(CORE-2000) The Lock Manager could report false deadlocks under high load.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1994) An “invalid database handle” could occur while executing a CREATE USER statement.

fixed by D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-2031
http://tracker.firebirdsql.org/browse/CORE-2027
http://tracker.firebirdsql.org/browse/CORE-2026
http://tracker.firebirdsql.org/browse/CORE-2022
http://tracker.firebirdsql.org/browse/CORE-2008
http://tracker.firebirdsql.org/browse/CORE-2002
http://tracker.firebirdsql.org/browse/CORE-2001
http://tracker.firebirdsql.org/browse/CORE-2000
http://tracker.firebirdsql.org/browse/CORE-1994

Bugs Fixed

82

 ~ ~ ~

(CORE-1986) Altering the name of a domain was causing dependencies on the domain to be dropped.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1985) The Lock Manager code could periodically cause 100% CPU load.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1984) The Lock Manager could falsely report a deadlock if one of the alleged participants was
waiting with a permitted timeout.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1980) Sweeper could consume 100% of CPU indefinitely.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1970) Lock conversion denied (215) errors could occur.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1962) The function EXTRACT (MILLISECONDS FROM aTimeStampOrTime) was returning
incorrect results.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1958) A Bugcheck 179 (decompression overran buffer) consistency check error would be thrown
when attempts were made to update the same record multiple times in a transaction.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1957) Long access control lists (ACLs) were being truncated, causing privileges to disappear.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1943) A statement that aggregated on a RAND() expression would return infinite rows.

fixed by A. dos Santos Fernandes

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1986
http://tracker.firebirdsql.org/browse/CORE-1985
http://tracker.firebirdsql.org/browse/CORE-1984
http://tracker.firebirdsql.org/browse/CORE-1980
http://tracker.firebirdsql.org/browse/CORE-1970
http://tracker.firebirdsql.org/browse/CORE-1962
http://tracker.firebirdsql.org/browse/CORE-1958
http://tracker.firebirdsql.org/browse/CORE-1957
http://tracker.firebirdsql.org/browse/CORE-1943

Bugs Fixed

83

(CORE-1938) Bugcheck 243 (missing pointer page) was being thrown on preparing or executing statements
that referred to a table being dropped or recreated by another connection.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1936) The built-in function LOG(base, number) was not checking parameters and would deliver
NAN values for out-of-range input instead of excepting.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1935) SIMILAR TO character classes were not being recognised correctly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1914) If a problem occurred during table creation, the database could be left in an inconsistent state.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1812) For some date/time expressions in dialect 1, indexes were not being used when they should
have been.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1650) An improbable case was demonstrated whereby something like SELECT GEN_ID(..)
FROM RDB$DATABASE with a GROUP BY operation would cause rows to be generated infinitely.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1607) A correlated subquery that depended on a UNION stream would be poorly optimized.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1606) ??? Ability to insert child record if parent record is locked but foreign key target unchanged ???

fixed by A. Potapchenko, V. Khorsun

 ~ ~ ~

(CORE-1575) Multiple updates to a table in a single transaction would throw up a serious memory bug.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1938
http://tracker.firebirdsql.org/browse/CORE-1936
http://tracker.firebirdsql.org/browse/CORE-1935
http://tracker.firebirdsql.org/browse/CORE-1914
http://tracker.firebirdsql.org/browse/CORE-1812
http://tracker.firebirdsql.org/browse/CORE-1650
http://tracker.firebirdsql.org/browse/CORE-1607
http://tracker.firebirdsql.org/browse/CORE-1606
http://tracker.firebirdsql.org/browse/CORE-1575

Bugs Fixed

84

(CORE-1544) When a user application created “temporary” stored procedures in run-time for some
run-time purpose, the internal generator for the RDB$PROCEDURES.RDB$PROCEDURE_ID column could
easily overflow the 32K limit (a signed SMALLINT) in its internal generator and cause a “numeric overflow”
exception on trying to create the new stored procedure.

The fix wraps around the generated value at the 32K boundary, allowing reuse of existing gaps in the ID num-
bering. A similar fix was applied to RDB$GENERATORS and RDB$EXCEPTIONS as well.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1343) ?? simple case and a subquery ??

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1246) Outer joins with derived tables returned incorrect results.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1245) Outer joins with views returned incorrect results.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-903) Firebird's behaviour with regard to multiple assignments referring to the same column in the
SET clause of an UPDATE statement did not comply with the standard.

fixed by D. Yemanov

 ~ ~ ~

(CORE-501) COALESCE exhibited an optimization problem.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-216) Privileges could be lost if a database contained too many.

fixed by A. Peshkov

 ~ ~ ~

Server/Client Crashes

(CORE-2372) The server would crash inside CMP_release() while releasing an already freed collation
resource.

fixed by V. Khorsun

http://tracker.firebirdsql.org/browse/CORE-1544
http://tracker.firebirdsql.org/browse/CORE-1343
http://tracker.firebirdsql.org/browse/CORE-1246
http://tracker.firebirdsql.org/browse/CORE-1245
http://tracker.firebirdsql.org/browse/CORE-903
http://tracker.firebirdsql.org/browse/CORE-501
http://tracker.firebirdsql.org/browse/CORE-216
http://tracker.firebirdsql.org/browse/CORE-2372

Bugs Fixed

85

 ~ ~ ~

(CORE-2368) An access violation would follow the call to isc_cancel_events() if the event was not found.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2248) During port validation, the server was crashing in server.cpp/loopThread().

fixed by V. Khorsun

 ~ ~ ~

(CORE-2222) Storing a text blob with a transliterating blob filter could cause an access violation in the
engine.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2158) Client and embedded libraries could crash while being unloaded.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2137) A database restore could crash the server when the configuration parameter DummyPack-
etInterval was set explicitly.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2121) The Client library could crash in the course of an operation involving BLOBs.
c

fixed by A. Peshkov

 ~ ~ ~

(CORE-2071) The client library would crash if isc_dsql_prepare() was called with a NULL statement text.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2064) A server process could crash during an exit while under high load.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2061) ALTER VIEW WITH CHECK OPTION could crash the engine.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2368
http://tracker.firebirdsql.org/browse/CORE-2248
http://tracker.firebirdsql.org/browse/CORE-2222
http://tracker.firebirdsql.org/browse/CORE-2158
http://tracker.firebirdsql.org/browse/CORE-2137
http://tracker.firebirdsql.org/browse/CORE-2121
http://tracker.firebirdsql.org/browse/CORE-2071
http://tracker.firebirdsql.org/browse/CORE-2064
http://tracker.firebirdsql.org/browse/CORE-2061

Bugs Fixed

86

(CORE-2042) ?? Connection lost to a database when using AUTONOMOUS TRANSACTION ??

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1983) An out-of-memory condition in the operating system would cause an access violation.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1965) The Lock Manager would crash with an invalid lock ID under concurrent DDL load.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1894) Circular dependencies between computed fields would crash the server.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1963) The server could crash on commit when granting/revoking privileges from multiple con-
nections simultaneously.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1506) Server crashes with isc_dsql_execute_immediate() and a zero-length string.

fixed by A. Peshkov

 ~ ~ ~

(CORE-210) The Classic server would crash if the same stored procedure was being altered in two separate
processes.

fixed by D. Yemanov

 ~ ~ ~

Remote Interface/API

(CORE-2307) API information requests were returning incomplete values in the results.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2262) Abrupt termination of a client connection could occur.

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-2042
http://tracker.firebirdsql.org/browse/CORE-1983
http://tracker.firebirdsql.org/browse/CORE-1965
http://tracker.firebirdsql.org/browse/CORE-1894
http://tracker.firebirdsql.org/browse/CORE-1963
http://tracker.firebirdsql.org/browse/CORE-1506
http://tracker.firebirdsql.org/browse/CORE-210
http://tracker.firebirdsql.org/browse/CORE-2307
http://tracker.firebirdsql.org/browse/CORE-2262

Bugs Fixed

87

 ~ ~ ~

(CORE-2234) Sometimes, terminated worker processes in Classic on Windows were still considered to
be alive after termination, due to improper checks on the Firebird server's part. The same bug could cause the
Firebird server to misbehave with prolonged deadlocks when under load.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2151) When a temporary directory path had spaces within it, it was (wrongly) being truncated
at the rightmost space.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2033) The symbol _Unwind_GetIP in the client library was being left unresolved due to a missing
static library linkage.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2018) Only a single client could access a read-only database.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2016) A client's attempt to use the XNET protocol causes it to hang if the attachment or the
database has been shut down.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1972) A non-SYSDBA user was able to change the Forced Writes mode of any database, along
with several other database characteristics that should be restricted to the SYSDBA. This long-standing, legacy
loophole in the handling of DPB parameters could lead to database corruptions or give ordinary users access
to SYSDBA-only operations.

The changes could affect several existing applications, database tools and connectivity layers (drivers, compo-
nents).

Same fix was backported to v.2.1.2 and v.2.0.5.

fixed by A. Peshkov

 ~ ~ ~

POSIX-specific

(CORE-2221) On POSIX platforms, any attachment to any database would fail after the access rights for
security2.fdb were modified from 0660 to 0666.

http://tracker.firebirdsql.org/browse/CORE-2234
http://tracker.firebirdsql.org/browse/CORE-2151
http://tracker.firebirdsql.org/browse/CORE-2033
http://tracker.firebirdsql.org/browse/CORE-2018
http://tracker.firebirdsql.org/browse/CORE-2016
http://tracker.firebirdsql.org/browse/CORE-1972
http://tracker.firebirdsql.org/browse/CORE-2221

Bugs Fixed

88

fixed by P. Beach, A. Peshkov

 ~ ~ ~

(CORE-2093) SuperServer startup would fail on Solaris 64-bit.

fixed by A. Peshkov

 ~ ~ ~

Windows-specific

(CORE-2108) When using the Windows local protocol (XNET), the next available map number was
calculated incorrectly, thus allowing the server to try to reuse a map number that already existed. If the “new”
map's timestamp was equal to the timestamp of the pre-existing map, it would cause the get_free_slot()
function to fail.

fixed by V. Khorsun

 ~ ~ ~

(CORE-2107) Establishing a TCP\IP connection to the Windows Classic Server could fail under high load.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1923) Successful execution of instsvc.exe remove was returning 1 as its completion code, instead
of 0.

fixed by D. Yemanov

 ~ ~ ~

MacOSX-specific

(CORE-2102) Firebird 2.5 would not build on MacOS (Darwin).

fixed by A. Peshkov

 ~ ~ ~

(CORE-2065) The MacOSX installation package was in violation of platform rules by not including the
client library in the dynamic loader search paths.

fixed by P. Beach

 ~ ~ ~

Database Monitoring/Administration

(CORE-2209) Monitoring requests in high load conditions could become very slow and even block other
activity during that time.

http://tracker.firebirdsql.org/browse/CORE-2093
http://tracker.firebirdsql.org/browse/CORE-2108
http://tracker.firebirdsql.org/browse/CORE-2107
http://tracker.firebirdsql.org/browse/CORE-1923
http://tracker.firebirdsql.org/browse/CORE-2102
http://tracker.firebirdsql.org/browse/CORE-2065
http://tracker.firebirdsql.org/browse/CORE-2209

Bugs Fixed

89

fixed by D. Yemanov

 ~ ~ ~

(CORE-2171) The column MON$CALLER_ID of table MON$CALL_STACK was reporting invalid IDs.

fixed by D. Yemanov

 ~ ~ ~

(CORE-2017) I/O statistics for stored procedures were not being kept account of in the monitoring tables.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1944) On Big Endian platforms, the monitoring tables contained wrong data.

fixed by A. Peshkov

 ~ ~ ~

Security

(CORE-2087) When the configuration parameter RemoteBindAddress specified a hostname instead of an
IP address, or specified a non-existent IP address, it would be silently ignored and the server would bind to all
interfaces, without any notification in firebird.log or the system log. This was considered a potential security
risk if the system had ports open to the Internet. Now, an invalid or unavailable IP address will be resolved to
localhost (127.0.0.1).

fixed by A. Peshkov

 ~ ~ ~

(CORE-2055) Buffer overflow in Firebird client library.

fixed by A. Peshkov

 ~ ~ ~

International Language Support

(CORE-2278) Conversion from and to CP943C was incorrect on RISC machines.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-2227) Problems were occurring in some environments when creating triggers that referred to
column names with accented characters.

fixed by A. dos Santos Fernandes

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2171
http://tracker.firebirdsql.org/browse/CORE-2017
http://tracker.firebirdsql.org/browse/CORE-1944
http://tracker.firebirdsql.org/browse/CORE-2087
http://tracker.firebirdsql.org/browse/CORE-2055
http://tracker.firebirdsql.org/browse/CORE-2278
http://tracker.firebirdsql.org/browse/CORE-2227

Bugs Fixed

90

(CORE-2123) ?? Problem with getting UNICODE_FSS data in the CP943C connection charset ??

fixed by A. dos Santos Fernandes, D. Kovalenko

 ~ ~ ~

(CORE-2122) ?? Translation of large text blobs between UNICODE_FSS / UTF8 and other charsets ??

fixed by A. dos Santos Fernandes, D. Kovalenko

 ~ ~ ~

(CORE-2095) Bug in CVJIS_eucj_to_unicode().

fixed by A. dos Santos Fernandes, D. Kovalenko

 ~ ~ ~

(CORE-2019) A UTF-8 conversion error (string truncation) was being thrown unexpectedly.

fixed by dos Santos Fernandes

 ~ ~ ~

(CORE-1989) A column with UNICODE_CI collation for UTF8 could not be used in a foreign key
constraint.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1927) The procedure sp_register_character_set could generate a negative value for RDB
$CHARACTER_SETS.RDB$CHARACTER_SET_ID.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1690) A condition in tables with UTF8 text was causing the error Arithmetic exception, numeric
overflow, or string truncation.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1596) Bug in CsConvert::convert

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1432) The collation attribute of columns was not being propagated between record formats.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-316) A database with multi-byte characters in its name could not be opened.

http://tracker.firebirdsql.org/browse/CORE-2123
http://tracker.firebirdsql.org/browse/CORE-2122
http://tracker.firebirdsql.org/browse/CORE-2095
http://tracker.firebirdsql.org/browse/CORE-2019
http://tracker.firebirdsql.org/browse/CORE-1989
http://tracker.firebirdsql.org/browse/CORE-1927
http://tracker.firebirdsql.org/browse/CORE-1690
http://tracker.firebirdsql.org/browse/CORE-1596
http://tracker.firebirdsql.org/browse/CORE-1432
http://tracker.firebirdsql.org/browse/CORE-316

Bugs Fixed

91

fixed by A. dos Santos Fernandes

 ~ ~ ~

Services Manager

(CORE-1982) Simultaneous backups or restores invoked through the Services API could interfere with
one another.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Command-line Utilities

fb_lock_print

(CORE-2354) “fb_lock_print -ia” output was not being flushed to the file between iterations.

fixed by A. Peshkov

 ~ ~ ~

isql

(CORE-2270) When run in a zlogin console, isql would consume all memory and crash.

fixed by J. Swierczynski, A. Peshkov

 ~ ~ ~

gbak Backup/Restore Utility

(CORE-2291) The error Bugcheck 284 (cannot restore singleton select data) would be thrown when...??

fixed by V. Khorsun

 ~ ~ ~

(CORE-2285) A database with a large number of grants could become corrupted after a backup/restore.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2245) A database with long exception messages defined would exhibit errors when being restored
from a backup.

fixed by C. Valderrama

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1982
http://tracker.firebirdsql.org/browse/CORE-2354
http://tracker.firebirdsql.org/browse/CORE-2270
http://tracker.firebirdsql.org/browse/CORE-2291
http://tracker.firebirdsql.org/browse/CORE-2285
http://tracker.firebirdsql.org/browse/CORE-2245

Bugs Fixed

92

(CORE-2223) gbak was encountering several bugs when operating on the access control lists (ACLs)
that store SQL privileges.

fixed by A. Peshkov

 ~ ~ ~

(CORE-2214) Security classes were being restored incorrectly.

fixed by A. dos Santos Fernandes

 ~ ~ ~

nbackup Utility

(CORE-2266) nBackup's database locking was not working correctly, causing database file growth to
continue when database writes should have been in suspension.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1696) Deadlock would occur in the Lock Manager when the NBackup utility was in use.

fixed by R. Simakov

 ~ ~ ~

gfix

(CORE-2271) The gfix utility had a legacy bug that exhibited itself during the database validation/repair
routines on large databases. The privilege level of the user running these routines was being checked too late in
the operation, thus allowing a non-privileged user (i.e., not SYSDBA or Owner) to start a validation operation.
Once the privilege check occurred, the database validation could halt in mid-operation and thus be left unfin-
ished, resulting in logical corruption that might not have been there otherwise.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1961) A Bugcheck 210 (page in use during flush) consistency check error would be thrown during
database validation.

fixed by D. Yemanov, R. Simakov

 ~ ~ ~

qli Query Utility for GDML

(CORE-2247) In the QLI utility, message and descriptor buffers were not properly aligned.

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2223
http://tracker.firebirdsql.org/browse/CORE-2214
http://tracker.firebirdsql.org/browse/CORE-2266
http://tracker.firebirdsql.org/browse/CORE-1696
http://tracker.firebirdsql.org/browse/CORE-2271
http://tracker.firebirdsql.org/browse/CORE-1961
http://tracker.firebirdsql.org/browse/CORE-2247

Bugs Fixed

93

Miscellaneous Bugs

(CORE-2282) Truncating UDFs were broken for negative numbers below -1.

fixed by C. Valderrama

 ~ ~ ~

(CORE-2281) Rounding UDFs were broken for negative numbers.

fixed by C. Valderrama

 ~ ~ ~

Firebird 2.5 Alpha 1

The following bugs were reported as fixed in the Alpha 1 release:

Core Engine/DSQL

(CORE-1421) SuperServer could not shut down immediately if the shutdown request followed a failed
login attempt.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1907) Dropping and adding a domain constraint in the same transaction would leave incorrect
dependencies.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1905) Hash sign (#) in filenames in aliases.conf was being handled incorrectly.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1887) Newly created databases had wrong access rights.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1869) Roles granting/revoking logic differed between v.2.0 and v.2.1.

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-2281
http://tracker.firebirdsql.org/browse/CORE-2281
http://tracker.firebirdsql.org/browse/CORE-1421
http://tracker.firebirdsql.org/browse/CORE-1907
http://tracker.firebirdsql.org/browse/CORE-1905
http://tracker.firebirdsql.org/browse/CORE-1887
http://tracker.firebirdsql.org/browse/CORE-1869

Bugs Fixed

94

(CORE-1841) If some VIEW used derived tables and long table names/aliases, it was possible to overflow
RDB$VIEW_RELATIONS.RDB$CONTEXT_NAME.

fixed by V. Khorsun

 ~ ~ ~

(CORE-xxxx) Text

fixed by A. Peshkov

 ~ ~ ~

(CORE-1840) Each DDL execution would cause a small memory leak.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1838) SET STATISTICS INDEX on an index for a GTT could wrongly change the index id by
the maximum available number for the database page size.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1830) Possible index corruption with multiple updates of the same record in the same transaction
with savepoints being used.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1817) The RelaxedAliasChecking parameter was having no effect with regard to RDB$DB_KEY.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1811) Parser reacted incorrectly to the unquoted usage of the keyword “VALUE”.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1798) RDB$DB_KEY was being evaluated as NULL in INSERT ... RETURNING.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1797) OLD/NEW.RDB$DB_KEY returned incorrect result in triggers.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1784) Error with EXECUTE PROCEDURE inside EXECUTE STATEMENT.

http://tracker.firebirdsql.org/browse/CORE-1841
http://tracker.firebirdsql.org/browse/CORE-xxxx
http://tracker.firebirdsql.org/browse/CORE-1840
http://tracker.firebirdsql.org/browse/CORE-1838
http://tracker.firebirdsql.org/browse/CORE-1830
http://tracker.firebirdsql.org/browse/CORE-1817
http://tracker.firebirdsql.org/browse/CORE-1811
http://tracker.firebirdsql.org/browse/CORE-1798
http://tracker.firebirdsql.org/browse/CORE-1797
http://tracker.firebirdsql.org/browse/CORE-1784

Bugs Fixed

95

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1777) Conflicting table reservation specifications were being allowed in the TPB.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1775) Security checking was performing poorly during prepare.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1770) Bugcheck 291 in DDL.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1735) Behavour problem with SET DEFAULT action argument in referential integrity triggers.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1731) Sometimes engine would hang for several minutes, using 1000% CPU load but with no
I/O activity.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1730) Problems arose if one of the directories specified in the TempDirectories config setting
was not available.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1724) Common table expressions could not be used in computed columns nor in quantified
predicates (IN / ANY / ALL).

fixed by V. Khorsun

 ~ ~ ~

(CORE-1694) Bug in CREATE/ALTER database trigger, where comments were in Russian.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1693) Error in EXECUTE STATEMENT inside CONNECT / TRANSACTION START triggers.

fixed by A. dos Santos Fernandes, D. Yemanov

http://tracker.firebirdsql.org/browse/CORE-1777
http://tracker.firebirdsql.org/browse/CORE-1775
http://tracker.firebirdsql.org/browse/CORE-1770
http://tracker.firebirdsql.org/browse/CORE-1735
http://tracker.firebirdsql.org/browse/CORE-1731
http://tracker.firebirdsql.org/browse/CORE-1730
http://tracker.firebirdsql.org/browse/CORE-1724
http://tracker.firebirdsql.org/browse/CORE-1694
http://tracker.firebirdsql.org/browse/CORE-1693

Bugs Fixed

96

 ~ ~ ~

(CORE-1689) “There are <n> dependencies” error message shows the wrong count of dependent objects

fixed by C. Valderrama

 ~ ~ ~

(CORE-1357) DummyPacketInterval mechanism was broken.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1307) Switch -s of fb_inet_server was not being processed correctly

fixed by A. Peshkov

 ~ ~ ~

(CORE-479) Grants would overwrite previous entries in RDB$SECURITY_CLASSES.

fixed by A. Peshkov

 ~ ~ ~

Server Crashes

(CORE-1930) Possible server crash if procedure was altered to have no outputs and dependent procedures
were not recompiled

fixed by V. Khorsun

 ~ ~ ~

(CORE-1919) Memory corruptions in EXECUTE STATEMENT could crash the server.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1884) Random crashes using stored procedures with expressions as default values for input
parameters.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1839) Server could crash when sorting by a field that was calculated using a recursive CTE.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1793) Server crashes at prepare of query with unused parameterized CTE.

http://tracker.firebirdsql.org/browse/CORE-1689
http://tracker.firebirdsql.org/browse/CORE-1357
http://tracker.firebirdsql.org/browse/CORE-1307
http://tracker.firebirdsql.org/browse/CORE-479
http://tracker.firebirdsql.org/browse/CORE-1930
http://tracker.firebirdsql.org/browse/CORE-1919
http://tracker.firebirdsql.org/browse/CORE-1884
http://tracker.firebirdsql.org/browse/CORE-1839
http://tracker.firebirdsql.org/browse/CORE-1793

Bugs Fixed

97

fixed by V. Khorsun

 ~ ~ ~

(CORE-1512) Server crashes due to the wrong parsing of the DEFAULT clause.

fixed by D. Yemanov

 ~ ~ ~

POSIX-specific

(CORE-1909) Garbage in firebird.log on linux/amd64

fixed by A. Peshkov

 ~ ~ ~

(CORE-1885) CREATE COLLATION caused lost connection under Posix.

fixed by A. dos Santos Fernandes, A. Peshkov

 ~ ~ ~

(CORE-1854) Value of CURRENT_USER might not be in upper case when using Unix OS authentication.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1826) changeRunUser.sh and restoreRootRunUser.sh scripts were not changing the run user in
the init.d scripts.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1818) Temporary files used for temporary page spaces were not deleted after use on Posix platforms.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1807) Server was being assigned to a non-canonical port after abnormal termination.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1766) Owner and group of isc_monitor1 file on Linux classic server were incorrect.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1671) atexit() calls in client libraries cause segfaults if the libraries were used in dlopen'ed modules.

http://tracker.firebirdsql.org/browse/CORE-1512
http://tracker.firebirdsql.org/browse/CORE-1909
http://tracker.firebirdsql.org/browse/CORE-1885
http://tracker.firebirdsql.org/browse/CORE-1854
http://tracker.firebirdsql.org/browse/CORE-1826
http://tracker.firebirdsql.org/browse/CORE-1818
http://tracker.firebirdsql.org/browse/CORE-1807
http://tracker.firebirdsql.org/browse/CORE-1766
http://tracker.firebirdsql.org/browse/CORE-1671

Bugs Fixed

98

fixed by A. Peshkov

 ~ ~ ~

Windows-specific

(CORE-1820) Setup program was failing to detect a running server.

fixed by P. Reeves, D. Yemanov

 ~ ~ ~

(CORE-1105, CORE-1390, CORE-1566 & CORE-1639) Aliases would not work properly for XNET
connections.

fixed by D. Yemanov

 ~ ~ ~

Data Manipulation Language

(CORE-1910) Invalid fields were accepted in the insert clause for MERGE.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1859) Arithmetic overflow or division by zero could occur in MAX() function.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1828) Error with ABS() function in dialect 1.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Remote Interface/API

(CORE-1868) Client library was crashing inside isc_dsql_free_statement().

fixed by A. Peshkov

 ~ ~ ~

(CORE-1763) The client library was not setting the options SO_KEEPALIVE nor TCP_NODELAY for
the socket at connection.

fixed by V. Khorsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1820
http://tracker.firebirdsql.org/browse/CORE-1105
http://tracker.firebirdsql.org/browse/CORE-1390
http://tracker.firebirdsql.org/browse/CORE-1566
http://tracker.firebirdsql.org/browse/CORE-1639
http://tracker.firebirdsql.org/browse/CORE-1910
http://tracker.firebirdsql.org/browse/CORE-1859
http://tracker.firebirdsql.org/browse/CORE-1828
http://tracker.firebirdsql.org/browse/CORE-1868
http://tracker.firebirdsql.org/browse/CORE-1763

Bugs Fixed

99

(CORE-1755 and)CORE-1756 A couple of crash scenarios could occur in isc_start_transaction().

fixed by D. Kovalenko, A. Peshkov

 ~ ~ ~

(CORE-1726) Failure in isc_service_start().

fixed by A. Peshkov

 ~ ~ ~

(CORE-1079) Every attach of fbclient/fbembed library to the host process would leak 64KB of memory.

fixed by A. Peshkov

 ~ ~ ~

International Language Support

(CORE-1802) Some issues were reported concerning maximum key size using the PXW_CSY collation.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1774) A problem appeared with collate ES_ES_CI_AI.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1254) Problem with DISTINCT and insensitive collations.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Database Monitoring/Administration

(CORE-1890) Database monitoring process could hang under high load.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1881) Database monitoring could crash the server or badly affect its page locking logic.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1728) Database monitoring would not work after a fresh Linux install.

fixed by A. Peshkov

http://tracker.firebirdsql.org/browse/CORE-1755
http://tracker.firebirdsql.org/browse/CORE-1756
http://tracker.firebirdsql.org/browse/CORE-1726
http://tracker.firebirdsql.org/browse/CORE-1079
http://tracker.firebirdsql.org/browse/CORE-1802
http://tracker.firebirdsql.org/browse/CORE-1774
http://tracker.firebirdsql.org/browse/CORE-1254
http://tracker.firebirdsql.org/browse/CORE-1890
http://tracker.firebirdsql.org/browse/CORE-1881
http://tracker.firebirdsql.org/browse/CORE-1728

Bugs Fixed

100

 ~ ~ ~

Security

(CORE-1845) Some standard calls would show the server installation directory to regular users.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1810) Some issues appeared concerning usernames with '.' characters.

fixed by A. Peshkov

 ~ ~ ~

Command-line Utilities

isql

(CORE-1891) SHOW VIEW would show nonsense information for view fields with expressions.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1875) Errors in scripts with CURRENT_DATE.

fixed by V. Khorsun

 ~ ~ ~

(CORE-1862) Extracted script was unusable with interdependent selectable procedures in FB 2.1

fixed by C. Valderrama

 ~ ~ ~

(CORE-1782) Isql would crash when fetching data for a column having an alias longer than 30 characters.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1749) DDL statement with AUTODDL ON was not showing statistics.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1507) ISQL linecount facility in scripts goes out of sync after an INPUT command.

fixed by C. Valderrama

http://tracker.firebirdsql.org/browse/CORE-1845
http://tracker.firebirdsql.org/browse/CORE-1810
http://tracker.firebirdsql.org/browse/CORE-1891
http://tracker.firebirdsql.org/browse/CORE-1875
http://tracker.firebirdsql.org/browse/CORE-1862
http://tracker.firebirdsql.org/browse/CORE-1782
http://tracker.firebirdsql.org/browse/CORE-1749
http://tracker.firebirdsql.org/browse/CORE-1507

Bugs Fixed

101

 ~ ~ ~

(CORE-1363) ISQL would crash when the string converted from a double was longer than 23 bytes.

fixed by C. Valderrama

 ~ ~ ~

gsec

(CORE-1680) Gsec DISPLAY was showing only a few of the first users when the security databases
contained more than 50 users.

fixed by A. Peshkov

 ~ ~ ~

gbak

(CORE-1911) Backup and restore were not thread-safe when using the Services API.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1843) Gbak with Service Manager would not allow paths with spaces.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1703) Delays/lockups when the gbak output was redirected to another process.

fixed by D. Yemanov

 ~ ~ ~

nbackup

(CORE-1876) Incremental backups with NBACKUP were broken in v.2.1.

fixed by N. Samofatov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1363
http://tracker.firebirdsql.org/browse/CORE-1680
http://tracker.firebirdsql.org/browse/CORE-1911
http://tracker.firebirdsql.org/browse/CORE-1843
http://tracker.firebirdsql.org/browse/CORE-1703
http://tracker.firebirdsql.org/browse/CORE-1876

102

Chapter 17

Firebird 2.5 Project Teams

Table 17.1. Firebird Development Teams

Developer Country Major Tasks

Dmitry Yemanov Russian
Federation

Full-time database engineer/implementor, core team leader

Alex Peshkov Russian
Federation

Full-time security features coordinator; buildmaster; porting
authority

Claudio Valderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements;
UDF fixer, designer and implementor

Vladyslav Khorsun Ukraine Full-time DB engineer, SQL feature designer/implementor

Arno Brinkman The Nether-
lands

Indexing and Optimizer enhancements; new DSQL features

Adriano dos San-
tos Fernandes

Brazil New international character-set handling; text and text
BLOB enhancements; new DSQL features; code scrutineer-
ing

Nickolay Samofatov Russian
Federation

Engine contributions

Roman Simakov Russian
Federation

Engine contributions

Bill Oliver U.S.A. Vulcan fork development, engine contributions

Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds

Pavel Cisar Czech Re-
public

QA tools designer/coordinator

Philippe Makowski France QA tester

Paul Reeves France Win32 installers and builds

Roman Rokytskyy Germany Jaybird implementor and co-coordinator

Evgeny Putilin Russian
Federation

Java stored procedures implementation

Jiri Cincura Czech Re-
public

Developer and coordinator of .NET providers

Vladimir Tsvigun Ukraine Developer and coordinator of ODBC/JDBC driver for Fire-
bird

Stephen Boyd Canada GPRE contributions

Firebird 2.5 Project Teams

103

Developer Country Major Tasks

Paul Vinkenoog The Nether-
lands

Coordinator, Firebird documentation project; documentation
writer and tools developer/implementor

Norman Dunbar U.K. Documentation writer

Pavel Menshchikov Russian
Federation

Documentation translator

Tomneko Hayashi Japan Documentation translator

Umberto (Mimmo) Masotti Italy Documentation translator

Helen Borrie Australia Release notes editor; Chief of Thought Police

also

Université du Littoral Côte
d'Opale Masters students

France QA tests development

104

Appendix A: SQLSTATE

SQLSTATE Codes & Messages
In this Appendix are all of the SQLSTATE codes currently supported:

1. The 5-character SQLSTATE code returned by the status array consists of SQL CLASS (2 characters) and
SQL SUBCLASS (3 characters)

2. Where existent and known, 1:1 mappings to the deprecated SQLCODE are included.
3. In many cases, SQLCODE:SQLSTATE mappings are not 1:1, which is intentional on the part of the SQL

Standards committee. It has been their aim, for many years, that the use of the SQLCODE be deprecated
entirely.

SQLSTATE Code Mapped Message Maps to SQLCODE..

SQLCLASS 00 (Success)

00000 Success

SQLCLASS 01 (Warning)

01000 General Warning

01001 Cursor operation conflict

01002 Disconnect error

01003 NULL value eliminated in set function

01004 String data, right-truncated

01005 Insufficient item descriptor areas

01006 Privilege not revoked

01007 Privilege not granted

01008 Implicit zero-bit padding

01100 Statement reset to unprepared

01101 Ongoing transaction has been committed

01102 Ongoing transaction has been rolled back

SQLCLASS 02 (No Data)

02000 No data found or no rows affected

SQLCLASS 07 (Dynamic SQL error)

07000 Dynamic SQL error

07001 Wrong number of input parameters

07002 Wrong number of output parameters

07003 Cursor specification cannot be executed

SQLSTATE

105

SQLSTATE Code Mapped Message Maps to SQLCODE..

07004 USING clause required for dynamic parameters

07005 Prepared statement not a cursor-specification

07006 Restricted data type attribute violation

07007 USING clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

SQLCLASS 08 (Connection Exception)

08001 Client unable to establish connection

08002 Connection name in use

08003 Connection does not exist

08004 Server rejected the connection

08006 Connection failure

08007 Transaction resolution unknown

SQLCLASS 0A (Feature Not Supported)

0A000 Feature Not Supported

SQLCLASS 0B (Invalid Transaction Initiation)

0B000 Invalid transaction initiation

SQLCLASS 0L (Invalid Grantor)

0L000 Invalid grantor

SQLCLASS 0P (Invalid Role Specification)

0P000 Invalid role specification

SQLCLASS 0U (Attempt to Assign to Non-Updatable Column)

0U000 Attempt to assign to non-updatable column

SQLCLASS 0V (Attempt to Assign to Ordering Column)

0V000 Attempt to assign to Ordering column

SQLCLASS 20 (Case Not Found For Case Statement)

20000 Case not found for case statement

SQLCLASS 21 (Cardinality Violation)

21000 Cardinality violation

21S01 Insert value list does not match column list

21S02 Degree of derived table does not match column list

SQLSTATE

106

SQLSTATE Code Mapped Message Maps to SQLCODE..

SQLCLASS 22 (Data Exception)

22000 Data exception

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22004 Null value not allowed

2205 Error in assignment

2206 Null value in field reference

2207 Invalid datetime format

22008 Datetime field overflow

22009 Invalid time zone displacement value

2200A Null value in reference target

2200B Escape character conflict

2200C Invalid use of escape character

2200D Invalid escape octet

2200E Null value in array target

2200F Zero-length character string

2200G Most specific type mismatch

22010 Invalid indicator parameter value

22011 Substring error

22012 Division by zero

22014 Invalid update value

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

2201B Invalid regular expression

2201C Null row not permitted in table

22020 Invalid limit value

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

SQLSTATE

107

SQLSTATE Code Mapped Message Maps to SQLCODE..

22024 Character string not properly terminated

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22028 Row already exists

2202D Null instance used in mutator function

2202E Array element error

2202F Array data, right truncation

SQLCLASS 23 (Integrity Constraint Violation)

23000 Integrity constraint violation

SQLCLASS 24 (Invalid Cursor State)

24000 Invalid cursor state

24504 The cursor identified in the UPDATE, DELETE, SET, or
GET statement is not positioned on a row

SQLCLASS 25 (Invalid Transaction State)

25000 Invalid transaction state

25 xxxx

25S01 Transaction state

25S02 Transaction is still active

25S03 Transaction is rolled back

SQLCLASS 26 (Invalid SQL Statement Name)

26000 Invalid SQL statement name

SQLCLASS 27 (Triggered Data Change Violation)

27000 Triggered data change violation

SQLCLASS 28 (Invalid Authorization Specification)

28000 Invalid authorization specification

SQLCLASS 2B (Dependent Privilege Descriptors Still Exist)

2B000 Dependent privilege descriptors still exist

SQLCLASS 2C (Invalid Character Set Name)

2C000 Invalid character set name

SQLCLASS 2D (Invalid Transaction Termination)

SQLSTATE

108

SQLSTATE Code Mapped Message Maps to SQLCODE..

2D000 Invalid transaction termination

SQLCLASS 2E (Invalid Connection Name)

2E000 Invalid connection name

SQLCLASS 2F (SQL Routine Exception)

2F000 SQL routine exception

2F002 Modifying SQL-data not permitted

2F003 Prohibited SQL-statement attempted

2F004 Reading SQL-data not permitted

2F005 Function executed no return statement

SQLCLASS 33 (Invalid SQL Descriptor Name)

33000 Invalid SQL descriptor name

SQLCLASS 34 (Invalid Cursor Name)

34000 Invalid cursor name

SQLCLASS 35 (Invalid Condition Number)

35000 Invalid condition number

SQLCLASS 36 (Cursor Sensitivity Exception)

36001 Request rejected

36002 Request failed

SQLCLASS 37 (Invalid Identifier)

37000 Invalid identifier

37001 Identifier too long

SQLCLASS 38 (External Routine Exception)

38000 External routine exception

SQLCLASS 39 (External Routine Invocation Exception)

39000 External routine invocation exception

SQLCLASS 3B (Invalid Save Point)

3B000 Invalid save point

SQLCLASS 3C (Ambiguous Cursor Name)

3C000 Ambiguous cursor name

SQLCLASS 3D (Invalid Catalog Name)

3D000 Invalid catalog name

SQLSTATE

109

SQLSTATE Code Mapped Message Maps to SQLCODE..

3D001 Catalog name not found

SQLCLASS 3F (Invalid Schema Name)

3F000 Invalid schema name

SQLCLASS 40 (Transaction Rollback)

40000 Ongoing transaction has been rolled back

40001 Serialization failure

40002 Transaction integrity constraint violation

40003 Statement completion unknown

SQLCLASS 42 (Syntax Error or Access Violation)

42000 Syntax error or access violation

42702 Ambiguous column reference

42725 Ambiguous function reference

42818 The operands of an operator or function are not compatible

42S01 Base table or view already exists

42S02 Base table or view not found

42S11 Index already exists

42S12 Index not found

42S21 Column already exists

42S22 Column not found

SQLCLASS 44 (With Check Option Violation)

44000 WITH CHECK OPTION Violation

SQLCLASS 45 (Unhandled User-defined Exception)

45000 Unhandled user-defined exception

SQLCLASS 54 (Program Limit Exceeded)

54000 Program limit exceeded

54001 Statement too complex

54011 Too many columns

54023 Too many arguments

SQLCLASS HY (CLI-specific Condition)

HY000 CLI-specific condition

HY001 Memory allocation error

SQLSTATE

110

SQLSTATE Code Mapped Message Maps to SQLCODE..

HY003 Invalid data type in application descriptor

HY004 Invalid data type

HY007 Associated statement is not prepared

HY008 Operation canceled

HY009 Invalid use of null pointer

HY010 Function sequence error

HY011 Attribute cannot be set now

HY012 Invalid transaction operation code

HY013 Memory management error

HY014 Limit on the number of handles exceeded

HY015 No cursor name available

HY016 Cannot modify an implementation row descriptor

HY017 Invalid use of an automatically allocated descriptor handle

HY018 Server declined the cancellation request

HY019 Non-string data cannot be sent in pieces

HY020 Attempt to concatenate a null value

HY021 Inconsistent descriptor information

HY024 Invalid attribute value

HY055 Non-string data cannot be used with string routine

HY090 Invalid string length or buffer length

HY091 Invalid descriptor field identifier

HY092 Invalid attribute identifier

HY095 Invalid FunctionId specified

HY096 Invalid information type

HY097 Column type out of range

HY098 Scope out of range

HY099 Nullable type out of range

HY100 Uniqueness option type out of range

HY101 Accuracy option type out of range

HY103 Invalid retrieval code

HY104 Invalid LengthPrecision value

SQLSTATE

111

SQLSTATE Code Mapped Message Maps to SQLCODE..

HY105 Invalid parameter type

HY106 Invalid fetch orientation

HY107 Row value out of range

HY109 Invalid cursor position

HY110 Invalid driver completion

HY111 Invalid bookmark value

HYC00 Optional feature not implemented

HYT00 Timeout expired

HYT01 Connection timeout expired

SQLCLASS XX (Internal Error)

XX000 Internal error

XX001 Data corrupted

XX002 Index corrupted

112

Appendix B: Licence Notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this Licence. Copies of the
Licence are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/
manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 2.5 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions are Contrib-
utors.

Copyright (C) 2004-2009. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge dot net.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New in Firebird 2.5
	Other New Features
	Administrative Enhancements
	Other SQL Language Additions
	Data-handling Enhancements
	API Additions
	International Language Support

	Changes in the Firebird Engine
	New Threading Architecture
	“Superclassic”
	Usage Notes
	Windows
	New Binary for POSIX

	Thread-safe Client Library
	Improvements
	Immediate Detection of Disconnected Clients on
 Classic
	Optimizations
	Data Retrieval
	BLOB Memory Usage

	DLL Loading for Windows Embedded Engine
	UDFs Safeguard
	Diagnostics
	Transaction Diagnostics
	Access Privilege Error Messages

	Metadata Improvements
	Preserve Character Set Default Collation

	Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number

	API (Application Programming Interface) Extensions
	Connection Strings & Character Sets
	isc_dpb_utf8_filename
	Client-Server Compatibility

	Code Page Conversions
	Using Unicode Code Points

	Support for SQLSTATE Completion Codes
	“Efficient Unprepare”
	Cancel Operation Function
	Usage

	Shutdown Functions
	Two Interrelated fb_shutdown* Functions
	fb_shutdown()
	fb_shutdown_callback()
	Using the fb_shutdown Functions

	New isc_spb_prp_* Constants for Shutdown
	isc_spb_prp_shutdown_mode and isc_spb_prp_online_mode

	Tighter Control Over Header-level Changes
	New Trace Services for Applications
	isc_action_svc_trace_start
	isc_action_svc_trace_stop
	isc_action_svc_trace_suspend
	isc_action_svc_trace_resume
	isc_action_svc_trace_list

	Other Services API Additions
	Mapping for RDB$ADMIN Role in Services API
	Tag Item isc_action_svc_set_mapping
	Tag Item isc_action_svc_drop_mapping

	Tag item isc_spb_bkp_no_triggers
	nBackup Support

	New Reserved Words and Changes
	Newly Reserved Words
	Keywords Added as Non-reserved

	Configuration Parameter Additions and Changes
	AuditTraceConfigFile
	Authentication
	Changes in V.2.5

	MaxUserTraceLogSize
	OldSetClauseSemantics
	Use Hostname for RemoteBindAddress

	Administrative Features
	New RDB$ADMIN System Role
	Windows Domain Administrators
	Automatically Mapping RDB$ADMIN to a Windows User
	New ALTER ROLE Statement

	Escalating RDB$ADMIN Scope

	Trace and Audit Services
	Overview of Features
	The System Audit Session
	

	User Trace Sessions
	Workings of a User Trace Session
	Who Can Manage Trace Sessions?
	Abnormal Endings
	User Trace Sample Configuration Texts
	Command-line Requests for User Trace Services

	Use Cases

	Monitoring Improvements
	Extended Access for Ordinary Users
	New MON$ Metadata for ODS 11.2 Databases
	Usage Notes
	Terminating a Client

	Security Hardening
	Windows Platforms
	No SYSDBA Auto-mapping (Windows)

	Data Definition Language (DDL)
	Quick Links
	Visibility of Procedure Definition Changes on Classic
	CREATE/ALTER/DROP USER
	Syntaxes for Altering Views
	ALTER VIEW
	CREATE OR ALTER VIEW

	Extension for CREATE VIEW
	ALTER Mechanism for Computed Columns
	Extensions for SQL Permissions
	GRANTED BY Clause
	ALTER ROLE
	REVOKE ALL

	Default COLLATION Attribute for a Database
	ALTER CHARACTER SET Command

	Data Manipulation Language (DML)
	Quick Links
	RegEx Search Support using SIMILAR TO
	Hex Literal Support
	Numeric Hex Literals
	Binary String Literals

	New UUID Conversion Functions
	CHAR_TO_UUID()
	UUID_TO_CHAR()

	SOME_COL = ? OR ? IS NULL Predication
	Extension to LIST() Function
	Optimizer Improvements
	Other Improvements

	Procedural SQL (PSQL)
	Quick Links
	Autonomous Transactions
	Borrow Database Column Type for a PSQL Variable
	New Extensions to EXECUTE STATEMENT
	Context Issues
	Authentication
	Transaction Behaviour
	Inherited Access Privileges

	External Queries from PSQL
	The <connection_string> Argument
	Character Set
	Access Privileges

	EXECUTE STATEMENT with Dynamic Parameters
	Syntax Conventions
	The New Binding Operator
	Syntax for Defining Parameters

	Examples Using EXECUTE STATEMENT
	Test Connections and Transactions
	
	

	Input Evaluation Demo
	Insert Speed Test

	International Language Support (INTL)
	Default COLLATION Attribute for a Database
	ALTER CHARACTER SET Command
	Connection Strings & Character Sets
	Other Improvements
	Malformed UNICODE_FSS Characters Disallowed
	Repair Switches for Malformed Strings
	Numeric Sort Attributes
	Character Sets and Collations
	UNICODE_CI_AI
	WIN_1258
	SJIS and EUCJ Character Sets

	Command-line Utilities
	Retrieve Password from a File or Prompt
	New -fetch_password Switch
	Usage of -fetch_password

	gsec and fbsvcmgr
	New -mapping Switch for gsec
	Mapping Tags for fbsvcmgr

	gbak
	Repair Switches for Malformed Strings
	Preserve Character Set Default Collation

	nBackup
	isql
	SQLSTATE instead of SQLCODE

	gpre (Precompiler)
	Some Updates

	Installation Notes
	Linux (POSIX)
	Windows
	Managing MSCV8 Assemblies
	Installing Runtimes as a Shared Assembly
	Installing Runtimes as a Private Assembly

	Compatibility Issues
	Effects of Unicode Metadata
	Configuration Parameters Removed
	SQL Language Changes
	Reserved Words
	Execution Results
	Malformed String Errors
	Logic Change in SET Clause

	Utilities
	fb_lock_print

	API Changes
	Rejection of Inconsistent TPB Options
	Addition of SQL_NULL Constant

	Security Hardening
	No SYSDBA Auto-mapping (Windows)
	Default Authentication Method (Windows)

	Bugs Fixed
	Firebird 2.5 Beta 1
	Core Engine/DSQL
	Server/Client Crashes
	Remote Interface/API
	POSIX-specific
	Windows-specific
	MacOSX-specific
	Database Monitoring/Administration
	Security
	International Language Support
	Services Manager
	Command-line Utilities
	fb_lock_print
	isql
	gbak Backup/Restore Utility
	nbackup Utility
	gfix
	qli Query Utility for GDML

	Miscellaneous Bugs

	Firebird 2.5 Alpha 1
	Core Engine/DSQL
	Server Crashes
	POSIX-specific
	Windows-specific
	Data Manipulation Language
	Remote Interface/API
	International Language Support
	Database Monitoring/Administration
	Security
	Command-line Utilities
	isql
	gsec
	gbak
	nbackup

	Firebird 2.5 Project Teams
	A. SQLSTATE
	SQLSTATE Codes & Messages

	B. Licence Notice

